dc.contributor.author | Sanvito, Stefano | en |
dc.contributor.author | Jones, Lewys | en |
dc.date.accessioned | 2023-03-31T13:01:26Z | |
dc.date.available | 2023-03-31T13:01:26Z | |
dc.date.issued | 2023 | en |
dc.date.submitted | 2023 | en |
dc.identifier.citation | Gambini, L. and Mullarkey, T. and Jones, L. and Sanvito, S., Machine-learning approach for quantified resolvability enhancement of low-dose STEM data, Machine Learning: Science and Technology, 4, 1, 2023 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description | cited By 0 | en |
dc.description.abstract | High-resolution electron microscopy is achievable only when a high electron dose is employed, a practice that may cause damage to the specimen and, in general, affects the observation. This drawback sets some limitations on the range of applications of high-resolution electron microscopy. Our work proposes a strategy, based on machine learning, which enables a significant improvement in the quality of Scanning Transmission Electron Microscope images generated at low electron dose, strongly affected by Poisson noise. In particular, we develop an autoencoder, trained on a large database of images, which is thoroughly tested on both synthetic and actual microscopy data. The algorithm is demonstrated to drastically reduce the noise level and approach ground-truth precision over a broad range of electron beam intensities. Importantly, it does not require human data pre-processing or the explicit knowledge of the dose level employed and can run at a speed compatible with live data acquisition. Furthermore, a quantitative unbiased benchmarking protocol is proposed to compare different denoising workflows. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Machine Learning: Science and Technology | en |
dc.relation.ispartofseries | 4 | en |
dc.relation.ispartofseries | 1 | en |
dc.rights | Y | en |
dc.subject | Machine learning | en |
dc.subject | High-resolution electron microscopy | en |
dc.title | Machine-learning approach for quantified resolvability enhancement of low-dose STEM data | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/sanvitos | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/jonesl1 | en |
dc.identifier.rssinternalid | 251348 | en |
dc.identifier.doi | http://dx.doi.org/10.1088/2632-2153/acbb52 | en |
dc.rights.ecaccessrights | openAccess | |
dc.identifier.orcid_id | 0000-0002-0291-715X | en |
dc.identifier.uri | https://iopscience.iop.org/article/10.1088/2632-2153/acbb52 | |
dc.identifier.uri | http://hdl.handle.net/2262/102397 | |