dc.contributor.author | Jones, Lewys | |
dc.date.accessioned | 2023-05-12T12:20:36Z | |
dc.date.available | 2023-05-12T12:20:36Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022 | en |
dc.identifier.citation | Annick De Backer, Sandra Van Aert, Christel Faes, Ece Arslan Irmak, Peter D. Nellist, Lewys Jones, Experimental reconstructions of 3D atomic structures from electron microscopy images using a Bayesian genetic algorithm, npj Computational Materials, 2022 | en |
dc.identifier.other | Y | |
dc.description | PUBLISHED | en |
dc.description.abstract | We introduce a Bayesian genetic algorithm for reconstructing atomic models of monotype crystalline nanoparticles from a single projection using Z-contrast imaging. The number of atoms in a projected atomic column obtained from annular dark field scanning transmission electron microscopy images serves as an input for the initial three-dimensional model. The algorithm minimizes the energy of the structure while utilizing a priori information about the finite precision of the atom-counting results and neighbor-mass relations. The results show promising prospects for obtaining reliable reconstructions of beam-sensitive nanoparticles during dynamical processes from images acquired with sufficiently low incident electron doses. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | npj Computational Materials; | |
dc.rights | Y | en |
dc.subject | Bayesian genetic algorithm | en |
dc.subject | nanoparticles | en |
dc.subject | electron microscopy images | en |
dc.title | Experimental reconstructions of 3D atomic structures from electron microscopy images using a Bayesian genetic algorithm | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/jonesl1 | |
dc.identifier.rssinternalid | 246815 | |
dc.identifier.doi | http://dx.doi.org/10.1038/s41524-022-00900-w | |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTheme | Nanoscience & Materials | en |
dc.identifier.orcid_id | 0000-0002-6907-0731 | |
dc.contributor.sponsor | Science Foundation Ireland (SFI) | en |
dc.contributor.sponsorGrantNumber | URF/RI/191637 | en |
dc.identifier.uri | http://hdl.handle.net/2262/102612 | |