dc.contributor.author | Hill, Nathan | en |
dc.date.accessioned | 2023-05-22T07:24:03Z | |
dc.date.available | 2023-05-22T07:24:03Z | |
dc.date.issued | 2021 | en |
dc.date.submitted | 2021 | en |
dc.identifier.citation | Meelen, Marieke; Roux, �lie; Hill, Nathan W., Optimisation of the Largest Annotated Tibetan Corpus Combining Rule-based, Memory-based, and Deep-learning Methods, ACM Transactions on Asian and Low-Resource Language Information Processing, 20, 1, 2021, 1-11 | en |
dc.identifier.issn | 2375-4699 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | This paper presents the new and improved version of the Annotated Corpus of Classical Tibetan (ACTib). These segmented and POS-tagged versions of all available texts in the Buddhist Digital Resource Center (BDRC) were annotated automatically using a memory-based tagger (see Meelen and Hill 2017). While this method had certain clear advantages - large amounts of data could quickly be split into meaningful words and grammatical markers, provided with highly detailed morpho-syntactic labels - the accuracy of these initial results can be improved in various ways. In this paper, we present a thorough error analysis and focus on correcting and improving these results using a combination of optimised memory-based, neural networks and rule-based methods. | en |
dc.format.extent | 1-11 | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | ACM Transactions on Asian and Low-Resource Language Information Processing | en |
dc.relation.ispartofseries | 20 | en |
dc.relation.ispartofseries | 1 | en |
dc.rights | Y | en |
dc.title | Optimisation of the Largest Annotated Tibetan Corpus Combining Rule-based, Memory-based, and Deep-learning Methods | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/hillna | en |
dc.identifier.rssinternalid | 225646 | en |
dc.identifier.doi | http://dx.doi.org/10.1145/3409488 | en |
dc.rights.ecaccessrights | openAccess | |
dc.identifier.orcid_id | 0000-0001-6423-017X | en |
dc.identifier.uri | http://hdl.handle.net/2262/102695 | |