Show simple item record

dc.contributor.authorHill, Nathanen
dc.date.accessioned2023-05-22T07:24:03Z
dc.date.available2023-05-22T07:24:03Z
dc.date.issued2021en
dc.date.submitted2021en
dc.identifier.citationMeelen, Marieke; Roux, �lie; Hill, Nathan W., Optimisation of the Largest Annotated Tibetan Corpus Combining Rule-based, Memory-based, and Deep-learning Methods, ACM Transactions on Asian and Low-Resource Language Information Processing, 20, 1, 2021, 1-11en
dc.identifier.issn2375-4699en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractThis paper presents the new and improved version of the Annotated Corpus of Classical Tibetan (ACTib). These segmented and POS-tagged versions of all available texts in the Buddhist Digital Resource Center (BDRC) were annotated automatically using a memory-based tagger (see Meelen and Hill 2017). While this method had certain clear advantages - large amounts of data could quickly be split into meaningful words and grammatical markers, provided with highly detailed morpho-syntactic labels - the accuracy of these initial results can be improved in various ways. In this paper, we present a thorough error analysis and focus on correcting and improving these results using a combination of optimised memory-based, neural networks and rule-based methods.en
dc.format.extent1-11en
dc.language.isoenen
dc.relation.ispartofseriesACM Transactions on Asian and Low-Resource Language Information Processingen
dc.relation.ispartofseries20en
dc.relation.ispartofseries1en
dc.rightsYen
dc.titleOptimisation of the Largest Annotated Tibetan Corpus Combining Rule-based, Memory-based, and Deep-learning Methodsen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/hillnaen
dc.identifier.rssinternalid225646en
dc.identifier.doihttp://dx.doi.org/10.1145/3409488en
dc.rights.ecaccessrightsopenAccess
dc.identifier.orcid_id0000-0001-6423-017Xen
dc.identifier.urihttp://hdl.handle.net/2262/102695


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record