Show simple item record

dc.contributor.authorZhang, Mimien
dc.date.accessioned2024-05-20T12:41:38Z
dc.date.available2024-05-20T12:41:38Z
dc.date.created21 - 27 July, 2024en
dc.date.issued2024en
dc.date.submitted2024en
dc.identifier.citationEmmanuel Akeweje and Mimi Zhang, Learning Mixtures of Gaussian Processes through Random Projection, Proceedings of the 41st International Conference on Machine Learning (ICML 2024), 41st International Conference on Machine Learning, Vienna, Austria, 21 - 27 July, 2024, 2024en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.descriptionVienna, Austriaen
dc.description.abstractWe propose an ensemble clustering framework to uncover latent cluster labels in functional data generated from a Gaussian process mixture. Our method exploits the fact that the projection coefficients of the functional data onto any give projection function follow a univariate Gaussian mixture model (GMM). By conducting multiple one-dimensional projections and learning a uni- variate GMM for each, we create an ensemble of GMMs. Each GMM serves as a base cluster- ing, and applying ensemble clustering yields a consensus clustering. Our approach significantly reduces computational complexity compared to state-of-the-art methods, and we provide theoretical guarantees on the identifiability and learnability of Gaussian process mixtures. Extensive experiments on synthetic and real datasets confirm the superiority of our method over existing techniquesen
dc.language.isoenen
dc.rightsYen
dc.titleLearning Mixtures of Gaussian Processes through Random Projectionen
dc.title.alternativeProceedings of the 41st International Conference on Machine Learning (ICML 2024)en
dc.title.alternative41st International Conference on Machine Learningen
dc.typeConference Paperen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/zhangm3en
dc.identifier.rssinternalid265645en
dc.rights.ecaccessrightsopenAccess
dc.identifier.orcid_id0000-0002-3807-297Xen
dc.identifier.urihttp://hdl.handle.net/2262/108414


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record