dc.contributor.author | Ventresque, Anthony | en |
dc.date.accessioned | 2025-02-06T14:55:10Z | |
dc.date.available | 2025-02-06T14:55:10Z | |
dc.date.issued | 2024 | en |
dc.date.submitted | 2024 | en |
dc.identifier.citation | Will Connors, Ellen Rushe, Anthony Ventresque, Frisbees and Dogs: Domain Adaptation for Object Detection with Limited Labels in Rugby Data, ECAI 2024, Spain, 2024 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description | Spain | en |
dc.description.abstract | Object detection often struggles when applied to low-resource,
domain-specific datasets. This challenge is exacerbated when dealing
with sports-related data such as rugby, where fast-paced gameplay
and tackles result in frequent instances of motion blur and occlusion, representing a substantial domain-shift from widely available
pre-trained models. Given the high cost of manual labelling, we seek
to determine whether we can minimise the number examples needed
for fine-tuning by identifying implausible label classifications made
by pre-trained object detection models. We do this using a coarse-
grained labelling approach in the absence of detailed ground truth
bounding boxes, allowing us to determine whether a label is implausible within the context of a rugby pitch. This is done to maximize the
information provided by each example used for fine-tuning with the
goal of minimizing the number of examples needed. Our results show
that using pool-based, single-step uncertainty sampling to select examples from a subset of frames with implausible labels improves the model performance. More specifically, we show that fine-tuning on
frames with the lowest confidence scores first can lead to greater performance after roughly 30 examples. | en |
dc.language.iso | en | en |
dc.rights | Y | en |
dc.title | Frisbees and Dogs: Domain Adaptation for Object Detection with Limited Labels in Rugby Data | en |
dc.title.alternative | ECAI 2024 | en |
dc.type | Conference Paper | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/ventresa | en |
dc.identifier.rssinternalid | 274441 | en |
dc.identifier.doi | https://doi.org/10.3233/FAIA241066 | en |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTheme | Telecommunications | en |
dc.subject.TCDTag | Artificial Intelligence | en |
dc.subject.TCDTag | Computer Graphics & Vision | en |
dc.subject.TCDTag | Computer Science | en |
dc.subject.TCDTag | Software Engineering | en |
dc.identifier.orcid_id | 0000-0003-2064-1238 | en |
dc.status.accessible | N | en |
dc.contributor.sponsor | Science Foundation Ireland (SFI) | en |
dc.identifier.uri | https://hdl.handle.net/2262/110800 | |