Video frame interpolation neural network for 3D tomography across different length scales

File Type:
PDFItem Type:
Journal ArticleDate:
2024Access:
openAccessCitation:
Gambini, L. and Gabbett, C. and Doolan, L. and Jones, L. and Coleman, J.N. and Gilligan, P. and Sanvito, S., Video frame interpolation neural network for 3D tomography across different length scales, Nature Communications, 15, 1, 2024Download Item:
Abstract:
Three-dimensional (3D) tomography is a powerful investigative tool for many scientific domains, going from materials science, to engineering, to medicine. Many factors may limit the 3D resolution, often spatially anisotropic, compromising the precision of the information retrievable. A neural network, designed for video-frame interpolation, is employed to enhance tomographic images, achieving cubic-voxel resolution. The method is applied to distinct domains: the investigation of the morphology of printed graphene nanosheets networks, obtained via focused ion beam-scanning electron microscope (FIB-SEM), magnetic resonance imaging of the human brain, and X-ray computed tomography scans of the abdomen. The accuracy of the 3D tomographic maps can be quantified through computer-vision metrics, but most importantly with the precision on the physical quantities retrievable from the reconstructions, in the case of FIB-SEM the porosity, tortuosity, and effective diffusivity. This work showcases a versatile image-augmentation strategy for optimizing 3D tomography acquisition conditions, while preserving the information content.
Sponsor
Grant Number
Science Foundation Ireland (SFI)
URF/RI/191637
Science Foundation Ireland (SFI)
12/RC/2278-P2
Author's Homepage:
http://people.tcd.ie/colemajhttp://people.tcd.ie/jonesl1
http://people.tcd.ie/sanvitos
Sponsor:
Science Foundation Ireland (SFI)Science Foundation Ireland (SFI)
Type of material:
Journal ArticleCollections
Series/Report no:
Nature Communications;15;
1;
Availability:
Full text availableDOI:
http://dx.doi.org/10.1038/s41467-024-52260-2Metadata
Show full item recordThe following license files are associated with this item: