Show simple item record

dc.contributor.authorHOUGHTON, CONOR JAMES
dc.date.accessioned2008-10-01T15:28:20Z
dc.date.available2008-10-01T15:28:20Z
dc.date.issued1996
dc.date.submitted1996en
dc.identifier.citationConor J. Houghton and Paul M. Sutcliffe `Octahedral and Dodecahedral Monopoles? in Nonlinearity, 9, 1996, pp 385 ? 401.en
dc.identifier.issn0951-7715
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractIt is shown that there exists a charge five monopole with octahedral symmetry and a charge seven monopole with icosahedral symmetry. A numerical implementation of the ADHMN construction is used to calculate the energy density of these monopoles and surfaces of constant energy density are displayed. The charge five and charge seven monopoles look like an octahedron and a dodecahedron, respectively. A scattering geodesic for each of these monopoles is presented and discussed using rational maps. This is done with the aid of a new formula for the cluster decomposition of monopoles when the poles of the rational map are close together.en
dc.description.sponsorshipMany thanks to Nigel Hitchin and Nick Manton for useful discussions. CJH thanks the EPSRC for a research studentship and the British Council for an FCO award. PMS thanks the EPSRC for a research fellowship.en
dc.format.extent385en
dc.format.extent401en
dc.format.extent192817 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherIOPen
dc.relation.ispartofseriesNonlinearityen
dc.relation.ispartofseries9en
dc.rightsYen
dc.subjectPure & Applied Mathematicsen
dc.titleOctahedral and dodecahedral monopolesen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/houghtcj
dc.identifier.rssurihttp://www.iop.org/EJ/article/0951-7715/9/2/005/no6205.pdf
dc.identifier.rssurihttp://uk.arxiv.org/abs/hep-th/9601147
dc.identifier.urihttp://hdl.handle.net/2262/22539


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record