Show simple item record

dc.contributor.authorZAITSEV, DMITRI
dc.date.accessioned2009-08-31T14:02:43Z
dc.date.available2009-08-31T14:02:43Z
dc.date.issued2006
dc.date.submitted2006en
dc.identifier.citationBaracco, Luca; Zaitsev, Dmitri; Zampieri, Giuseppe 'A Burns-Krantz type theorem for domains with corners' in Mathematische Annalen, 336, (3), 2006, pp 1432 - 1807en
dc.identifier.otherY
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractThe goal of this paper is twofold. First, to give purely local boundary uniqueness results for maps defined only on one side as germs at a boundary point and hence not necessarily sending any domain to itself and also under the weaker assumption that $f(z)=z+o(|z-p|^3)$ holds only for $z$ in a proper cone in $D$ with vertex $p$. Such results have no analogues in one complex variable in contrast to the situation when a domain is preserved. And second, to extend the above results from boundaries of domains to submanifolds of higher codimension.en
dc.format.extent1432en
dc.format.extent1807en
dc.format.extent241297 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesMathematische Annalenen
dc.relation.ispartofseries336en
dc.relation.ispartofseries3en
dc.rightsYen
dc.subjectPure & Applied Mathematicsen
dc.titleA Burns-Krantz type theorem for domains with cornersen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/zaitsevd
dc.identifier.rssinternalid43247
dc.identifier.rssurihttp://dx.doi.org/10.1007/s00208-005-0727-2
dc.identifier.urihttp://hdl.handle.net/2262/31968


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record