dc.contributor.author | ZAITSEV, DMITRI | |
dc.date.accessioned | 2009-08-31T14:02:43Z | |
dc.date.available | 2009-08-31T14:02:43Z | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006 | en |
dc.identifier.citation | Baracco, Luca; Zaitsev, Dmitri; Zampieri, Giuseppe 'A Burns-Krantz type theorem for domains with corners' in Mathematische Annalen, 336, (3), 2006, pp 1432 - 1807 | en |
dc.identifier.other | Y | |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | The goal of this paper is twofold. First, to give purely local boundary uniqueness results for maps defined only on one side as germs at a boundary point and hence not necessarily sending any domain to itself and also under the weaker assumption that $f(z)=z+o(|z-p|^3)$ holds only for $z$ in a proper cone in $D$ with vertex $p$. Such results have no analogues in one complex variable in contrast to the situation when a domain is preserved. And second, to extend the above results from boundaries of domains to submanifolds of higher codimension. | en |
dc.format.extent | 1432 | en |
dc.format.extent | 1807 | en |
dc.format.extent | 241297 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.ispartofseries | Mathematische Annalen | en |
dc.relation.ispartofseries | 336 | en |
dc.relation.ispartofseries | 3 | en |
dc.rights | Y | en |
dc.subject | Pure & Applied Mathematics | en |
dc.title | A Burns-Krantz type theorem for domains with corners | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/zaitsevd | |
dc.identifier.rssinternalid | 43247 | |
dc.identifier.rssuri | http://dx.doi.org/10.1007/s00208-005-0727-2 | |
dc.identifier.uri | http://hdl.handle.net/2262/31968 | |