Show simple item record

dc.contributor.authorZAITSEV, DMITRI
dc.date.accessioned2009-08-31T14:50:58Z
dc.date.available2009-08-31T14:50:58Z
dc.date.issued2000
dc.date.submitted2000en
dc.identifier.citationKaup, Wilhelm; Zaitsev, Dmitri 'On symmetric Cauchy-Riemann manifolds' in Advances in Mathematics, 149, (2), 2000, pp 145 - 181en
dc.identifier.otherY
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractThe Riemannian symmetric spaces play an important role in different branches of mathematics. By definition, a (connected) Riemannian manifold M is called symmetric if, to every a ? M, there exists an involutory isometric diffeomorphism sa:M ? M having a as isolated fixed point in M (or equivalently, if the differential dasa is the negative identity on the the tangent space Ta = TaM of M at a). In case such a transformation sa exists for a ? M, it is uniquely determined and is the geodesic reflection of M about the point a. As a consequence, for every Riemannian symmetric space M, the group G = GM generated by all symmetries sa, a ? M, is a Lie group acting transitively on M. In particular, M can be identified with the homogeneous space G/K for some compact subgroup K ? G. Using the elaborate theory of Lie groups and Lie algebras E.Cartan classified all Riemannian symmetric spaces.en
dc.format.extent145en
dc.format.extent181en
dc.format.extent350015 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesAdvances in Mathematicsen
dc.relation.ispartofseries149en
dc.relation.ispartofseries2en
dc.rightsYen
dc.subjectPure & Applied Mathematicsen
dc.titleOn symmetric Cauchy-Riemann manifoldsen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/zaitsevd
dc.identifier.rssinternalid24825
dc.identifier.rssurihttp://dx.doi.org/10.1006/aima.1999.1863
dc.identifier.urihttp://hdl.handle.net/2262/31976


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record