dc.contributor.author | TIMONEY, RICHARD | |
dc.date.accessioned | 2009-09-02T17:41:47Z | |
dc.date.available | 2009-09-02T17:41:47Z | |
dc.date.issued | 1994 | |
dc.date.submitted | 1994 | en |
dc.identifier.citation | R.M. Timoney, S. Dineen, J. F. Feinstein and A. G. O'Farrell 'A fixed-point theorem for holomorphic maps' in Proceedings of the Royal Irish Academy, 94A, 1994, pp 77-84 | en |
dc.identifier.other | Y | |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | We consider the action on the maximal ideal space M of the algebra H of bounded analytic
functions, induced by an analytic self?map of a complex manifold, X. After some general
preliminaries, we focus on the question of the existence of fixed points for this action,
in the case when X is the open unit disk, D. We classify the fixed?point?free M?obius
transformations, and we show that for an arbitrary analytic map from D into itself, the
induced map has a fixed point, or it restricts to a fixed?point?free M?obius map on some
analytic disk contained in M. | en |
dc.format.extent | 77-84 | en |
dc.format.extent | 103154 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | Royal Irish Academy | en |
dc.relation.ispartofseries | Proceedings of the Royal Irish Academy | en |
dc.relation.ispartofseries | 94A | en |
dc.rights | Y | en |
dc.subject | Pure & Applied Mathematics | en |
dc.title | A fixed-point theorem for holomorphic maps | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/rtimoney | |
dc.identifier.rssinternalid | 60800 | |
dc.identifier.uri | http://hdl.handle.net/2262/32027 | |