Show simple item record

dc.contributor.authorCOFFEY, WILLIAM THOMAS
dc.date.accessioned2010-03-30T13:53:27Z
dc.date.available2010-03-30T13:53:27Z
dc.date.issued2009
dc.date.submitted2009en
dc.identifier.citationYu. P. Kalmykov, W. T. Coffey and S. V. Titov, Phase space Langevin equation for spin relaxation in a dc magnetic field, Europhysics Letters, 88, 1, 2009, 17002en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractA Langevin equation for the quantum Brownian motion of a spin of arbitrary size in a uniform external dc magnetic field is derived from the phase space master equation in the weak coupling and narrowing limits, for the quasiprobability distribution (Wigner) function of spin orientations in the configuration space of polar and azimuthal angles following methods long familiar in quantum optics. The closed system of differential-recurrence equations for the statistical moments describing magnetic relaxation of the spin is obtained as an example of applications of this equation.en
dc.format.extent17002en
dc.language.isoenen
dc.publisherIOP Publishingen
dc.relation.ispartofseriesEurophysics Letters;
dc.relation.ispartofseries88;
dc.relation.ispartofseries1;
dc.rightsYen
dc.subjectElectronic & Electrical Engineering
dc.subjectElectronic & Electrical Engineering
dc.subjectElectronic & Electrical Engineering
dc.subjectElectronic & Electrical Engineering
dc.subjectElectronic & Electrical Engineering
dc.titlePhase space Langevin equation for spin relaxation in a dc magnetic fielden
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/wcoffey
dc.identifier.rssinternalid65242
dc.identifier.rssurihttp://dx.doi.org/10.1209/0295-5075/88/17002en
dc.contributor.sponsorIrish Research Council for Science Engineering and Technology
dc.identifier.urihttp://hdl.handle.net/2262/38853


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record