Show simple item record

dc.contributor.authorMurphy, Paulaen
dc.contributor.authorPrendergast, Patricken
dc.contributor.authorNowlan, Niamhen
dc.date.accessioned2010-05-14T14:43:59Z
dc.date.available2010-05-14T14:43:59Z
dc.date.created17-21 Juneen
dc.date.issued2008en
dc.date.submitted2008en
dc.identifier.citationNowlan, N., Prendergast P.J. and Murphy, P., Identification of Mechanosensitive Genes during Embryonic Bone Formation., PLoS Computational Biology, 4, 12, 2008, e1000250-en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.descriptionLake Tahoeen
dc.description.abstractAlthough it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by "mechanosensitive" genes, but it is a challenge to demonstrate that the genetic regulation of the biological system is dependant on particular mechanical forces in vivo. We propose a new means of selecting candidate mechanosensitive genes by comparing in vivo gene expression patterns with patterns of biophysical stimuli, computed using finite element analysis. In this study, finite element analyses of the avian embryonic limb were performed using anatomically realistic rudiment and muscle morphologies, and patterns of biophysical stimuli were compared with the expression patterns of four candidate mechanosensitive genes integral to bone development. The expression patterns of two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise with biophysical stimuli induced by embryonic muscle contractions, identifying them as potentially being involved in the mechanoregulation of bone formation. An altered mechanical environment was induced in the embryonic chick, where a neuromuscular blocking agent was administered in ovo to modify skeletal muscle contractions. Finite element analyses predicted dramatic changes in levels and patterns of biophysical stimuli, and a number of immobilised specimens exhibited differences in ColX and Ihh expression. The results obtained indicate that computationally derived patterns of biophysical stimuli can be used to inform a directed search for genes that may play a mechanoregulatory role in particular in vivo events or processes. Furthermore, the experimental data demonstrate that ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators in translating information from the mechanical environment to the molecular regulation of bone formation in the embryo.en
dc.format.extente1000250en
dc.language.isoenen
dc.relation.ispartofseriesYen
dc.relation.ispartofseriesPLoS Computational Biologyen
dc.relation.ispartofseries4en
dc.relation.ispartofseries12en
dc.rightsYen
dc.subjectBiochemical Research Methodsen
dc.subjectMathematical & Computational Biologyen
dc.titleIdentification of Mechanosensitive Genes during Embryonic Bone Formation.en
dc.title.alternativeProceedings of the ASME Summer Bioengineering Conference 2009, SBC2009en
dc.title.alternative11th ASME Summer Bioengineering Conference, SBC2009en
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/pmurphy3en
dc.identifier.peoplefinderurlhttp://people.tcd.ie/ninowlanen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/pprenderen
dc.identifier.rssinternalid53562en
dc.identifier.rssurihttp://dx.doi.org/10.1371/journal.pcbi.1000250en
dc.status.accessibleNen
dc.contributor.sponsorIrish Research Council for Science and Engineering Technology (IRCSET)en
dc.identifier.urihttp://hdl.handle.net/2262/39557


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record