dc.contributor.author | SIMMS, CIARAN | en |
dc.contributor.author | LALLY, CAITRIONA | en |
dc.contributor.author | KERSKENS, CHRISTIAN | en |
dc.date.accessioned | 2010-06-29T16:25:49Z | |
dc.date.available | 2010-06-29T16:25:49Z | |
dc.date.issued | 2010 | en |
dc.date.submitted | 2010 | en |
dc.identifier.citation | Moerman, KM ; Kerskens, CM ; Lally, C ; Flamini, V ; Simms, CK, Evaluation of a Validation Method for MR Imaging-Based Motion Tracking Using Image Simulation, EURASIP Journal on Advances in Signal Processing, 2010, 2010, 942131 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description | 11p | en |
dc.description.abstract | Magnetic Resonance (MR) imaging-based motion and deformation tracking techniques combined with finite element (FE)
analysis are a powerful method for soft tissue constitutive model parameter identification. However, deriving deformation data
from MR images is complex and generally requires validation. In this paper a validation method is presented based on a silicone gel
phantomcontaining contrasting sphericalmarkers. Tracking of thesemarkers provides a directmeasure of deformation. Validation
of in vivo medical imaging techniques is often challenging due to the lack of appropriate reference data and the validation method
may lack an appropriate reference. This paper evaluates a validation method using simulated MR image data. This provided an
appropriate reference and allowed different error sources to be studied independently and allowed evaluation of the method for
various signal-to-noise ratios (SNRs). The geometric bias error was between 0?5.560?10?3 voxels while the noisy magnitudeMR
image simulations demonstrated errors under 0.1161 voxels (SNR: 5?35). | en |
dc.description.sponsorship | This work was funded by a Research Frontiers Grant
(06/RF/ENMO76) awarded by Science Foundation Ireland. | en |
dc.format.extent | 942131 | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | EURASIP Journal on Advances in Signal Processing | en |
dc.relation.ispartofseries | 2010 | en |
dc.rights | Y | en |
dc.subject | Magnetic Resonance (MR) imaging-based motion and deformation tracking techniques | en |
dc.subject.lcsh | Magnetic Resonance (MR) imaging-based motion and deformation tracking techniques | en |
dc.title | Evaluation of a Validation Method for MR Imaging-Based Motion Tracking Using Image Simulation | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/kerskenc | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/csimms | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/lallyca | en |
dc.identifier.rssinternalid | 62989 | en |
dc.identifier.doi | http://dx.doi.org/10.1155/2010/942131 | en |
dc.subject.TCDTheme | Nanoscience & Materials | en |
dc.subject.TCDTheme | Next Generation Medical Devices | en |
dc.contributor.sponsor | Science Foundation Ireland (SFI) | en |
dc.identifier.uri | http://hdl.handle.net/2262/40224 | |