Show simple item record

dc.contributor.authorFROLOV, SERGEY
dc.date.accessioned2011-01-17T18:52:33Z
dc.date.available2011-01-17T18:52:33Z
dc.date.issued1995
dc.date.submitted1995en
dc.identifier.citationS. A. Frolov, Gauge invariant Hamiltonian formulation of lattice Yang-Mills theory, Modern Phsyics Letters A, 10, 34, 1995, 2619-2631en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractIt it known that to get the usual Hamiltonian formulation of lattice Yang-Mills theory in the temporal gauge A0 = 0 one should place on every link the cotangent bundle of a Lie group. The cotangent bundle may be considered as a limiting case of a so called Heisenberg double of a Lie group which is one of the basic objects in the theory of Lie-Poisson and quantum groups. It is shown in the paper that there is a generalization of the usual Hamiltonian formulation to the case of the Heisenberg double .en
dc.description.sponsorshipThe author would like to thank G.Fiore, P.Schupp and A.A.Slavnov for discussions. He is grateful to Professor J.Wess for kind hospitality and the Alexander von Humboldt Foundation for the support. This work has been supported in part by ISF-grant MNB000 and by the Russian Basic Research Fund under grant number 94-01-00300a.en
dc.format.extent2619-2631en
dc.language.isoenen
dc.publisherWorld Scientificen
dc.relation.ispartofseriesModern Phsyics Letters A;
dc.relation.ispartofseries10;
dc.relation.ispartofseries34;
dc.rightsYen
dc.subjectMathematicsen
dc.subjectlattice Yang-Mills theoryen
dc.titleGauge invariant Hamiltonian formulation of lattice Yang-Mills theoryen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/frolovs
dc.identifier.rssinternalid70248
dc.identifier.rssurihttp://dx.doi.org/10.1142/S0217732395002751en
dc.identifier.urihttp://hdl.handle.net/2262/49338


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record