dc.contributor.author | GALVAN-LOPEZ, EDGAR | en |
dc.date.accessioned | 2011-06-27T15:40:51Z | |
dc.date.available | 2011-06-27T15:40:51Z | |
dc.date.issued | 2011 | en |
dc.date.submitted | 2011 | en |
dc.identifier.citation | Riccardo Poli and Edgar Galvan-Lopez., The Effects of Constant and Bit-Wise Neutrality on Problem Hardness, Fitness Distance Correlation and Phenotypic Mutation Rates., IEEE Transactions on Evolutionary Computation., 16, 2, 2011, 279-300 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description | art. no. 6129403 | en |
dc.description.abstract | Kimura?s neutral theory of evolution has inspired researchers from the evolutionary computation community to
incorporate neutrality into Evolutionary Algorithms (EAs) in the hope that it can aid evolution. The effects of neutrality
on evolutionary search have been considered in a number of studies, the results of which, however, have been highly
contradictory. In this paper, we analyse the reasons for this and we make an effort to shed some light on neutrality
by addressing them. We consider two very simple forms of neutrality: constant neutrality ? a neutral network of
constant fitness, identically distributed in the whole search space ? and bit-wise neutrality, where each phenotypic
bit is obtained by transforming a group of genotypic bits via an encoding function. We study these forms of neutrality
both theoretically and empirically (both for standard benchmark functions and a class of random MAX-SAT problems)
to see how and why they influence the behaviour and performance of a mutation-based EA. In particular, we analyse
how the fitness distance correlation of landscapes changes under the effect of different neutral encodings and how
phenotypic mutation rates vary as a function of genotypic mutation rates. Both help explain why the behaviour of a
mutation-based EA may change so radically as problem, form of neutrality and mutation rate are varied. | en |
dc.format.extent | 279-300 | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | IEEE Transactions on Evolutionary Computation. | en |
dc.relation.ispartofseries | 16 | en |
dc.relation.ispartofseries | 2 | en |
dc.rights | Y | en |
dc.subject | Applied mathematics | en |
dc.subject | Phenotypic Mutation Rates | en |
dc.subject | Neutrality | en |
dc.subject | Genotype- Phenotype Mappings | en |
dc.title | The Effects of Constant and Bit-Wise Neutrality on Problem Hardness, Fitness Distance Correlation and Phenotypic Mutation Rates. | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/galvanle | en |
dc.identifier.rssinternalid | 73779 | en |
dc.identifier.uri | http://hdl.handle.net/2262/57291 | |