dc.contributor.author | Constantin, Adrian | |
dc.contributor.author | Lannes, David | |
dc.date.accessioned | 2013-11-15T15:32:53Z | |
dc.date.available | 2013-11-15T15:32:53Z | |
dc.date.issued | 2009-04-01 | |
dc.identifier.citation | Adrian Constantin, David Lannes, 'The Hydrodynamical Relevance of the Camassa?Holm and Degasperis?Procesi Equations', Springer-Verlag, Archive for Rational Mechanics and Analysis;192 (1), 2009-04-01 | en |
dc.identifier.issn | 1432-0673 | |
dc.description.abstract | n recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin?Bona?Mahoney and Korteweg?de Vries equations. In particular, they accommodate wave breaking phenomena. | en |
dc.language.iso | en | en |
dc.publisher | Springer-Verlag | en |
dc.relation.ispartofseries | Archive for Rational Mechanics and Analysis;192 (1) | |
dc.subject | Camassa?Holm equation | en |
dc.subject | Degasperis?Procesi equation | en |
dc.title | The Hydrodynamical Relevance of the Camassa?Holm and Degasperis?Procesi Equations | en |
dc.type | Journal Article | en |
dc.rights.ecaccessrights | OpenAccess | |
dc.identifier.uri | http://hdl.handle.net/2262/67631 | |