Show simple item record

dc.contributor.authorConstantin, Adrian
dc.contributor.authorLannes, David
dc.date.accessioned2013-11-15T15:32:53Z
dc.date.available2013-11-15T15:32:53Z
dc.date.issued2009-04-01
dc.identifier.citationAdrian Constantin, David Lannes, 'The Hydrodynamical Relevance of the Camassa?Holm and Degasperis?Procesi Equations', Springer-Verlag, Archive for Rational Mechanics and Analysis;192 (1), 2009-04-01en
dc.identifier.issn1432-0673
dc.description.abstractn recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin?Bona?Mahoney and Korteweg?de Vries equations. In particular, they accommodate wave breaking phenomena.en
dc.language.isoenen
dc.publisherSpringer-Verlagen
dc.relation.ispartofseriesArchive for Rational Mechanics and Analysis;192 (1)
dc.subjectCamassa?Holm equationen
dc.subjectDegasperis?Procesi equationen
dc.titleThe Hydrodynamical Relevance of the Camassa?Holm and Degasperis?Procesi Equationsen
dc.typeJournal Articleen
dc.rights.ecaccessrightsOpenAccess
dc.identifier.urihttp://hdl.handle.net/2262/67631


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record