Show simple item record

dc.contributor.authorWILSON, SIMONen
dc.date.accessioned2014-08-12T15:25:35Z
dc.date.available2014-08-12T15:25:35Z
dc.date.created17 - 20/08/2014en
dc.date.issued2014en
dc.date.submitted2014en
dc.identifier.citationWilson, S.P., Mai, T., Cogan, P., Bhattacharya, A., Aslett, L., O'Riordain, S. and Roetzer, G., Using Storm for scaleable sequential statistical inference, Proceedings of CompStat 2014, CompStat 2014, Geneva, 17 - 20/08/2014, 2014en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.descriptionGenevaen
dc.description.abstractThis article describes Storm, an environment for doing streaming data analysis. Two examples of sequential data analysis | computation of a running summary statistic and sequential updating of a posterior distribution | are implemented and their performance is investigated.en
dc.language.isoenen
dc.rightsYen
dc.subjectstreaming dataen
dc.subjectsequential inferenceen
dc.subjectStorm,en
dc.titleUsing Storm for scaleable sequential statistical inferenceen
dc.title.alternativeProceedings of CompStat 2014en
dc.title.alternativeCompStat 2014en
dc.typeConference Paperen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/swilsonen
dc.identifier.rssinternalid95584en
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDThemeSmart & Sustainable Planeten
dc.subject.TCDTagDistributed systemsen
dc.subject.TCDTagSequential data analysisen
dc.subject.TCDTagStatistical computingen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.contributor.sponsorGrantNumber12/RC/2289en
dc.identifier.urihttp://hdl.handle.net/2262/70886


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record