dc.contributor.author | HINES, ANDREW | en |
dc.date.accessioned | 2014-12-01T11:20:02Z | |
dc.date.available | 2014-12-01T11:20:02Z | |
dc.date.issued | 2014 | en |
dc.date.submitted | 2014 | en |
dc.identifier.citation | A Hines, P Kendrick, A Barri, M Narwaria, JA Redi, Robustness and prediction accuracy of machine learning for objective visual quality assessment, EUSIPCO, Lisbon, Portugal, 2014 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description | Lisbon, Portugal | en |
dc.description.abstract | Machine Learning (ML) is a powerful tool to support the
development of objective visual quality assessment metrics,
serving as a substitute model for the perceptual mechanisms
acting in visual quality appreciation. Nevertheless, the reli-
ability of ML-based techniques within objective quality as-
sessment metrics is often questioned. In this study, the ro-
bustness of ML in supporting objective quality assessment
is investigated, specifically when the feature set adopted for
prediction is suboptimal. A Principal Component Regres-
sion based algorithm and a Feed Forward Neural Network
are compared when pooling the Structural Similarity Index
(SSIM) features perturbed with noise. The neural network
adapts better with noise and intrinsically favours features ac-
cording to their salient content. | en |
dc.language.iso | en | en |
dc.rights | Y | en |
dc.subject | machine learning | en |
dc.subject | neural networks | en |
dc.subject | SSIM | en |
dc.subject | image quality assessment | en |
dc.title | Robustness and prediction accuracy of machine learning for objective visual quality assessment | en |
dc.title.alternative | EUSIPCO | en |
dc.type | Conference Paper | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/ahines | en |
dc.identifier.rssinternalid | 98150 | en |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTheme | Intelligent Content & Communications | en |
dc.subject.TCDTag | Signal processing | en |
dc.identifier.rssuri | http://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569923531.pdf | en |
dc.identifier.uri | http://hdl.handle.net/2262/72315 | |