Show simple item record

dc.contributor.authorDotsenko, Vladimiren
dc.date.accessioned2015-05-19T14:54:57Z
dc.date.available2015-05-19T14:54:57Z
dc.date.issued2015en
dc.date.submitted2015en
dc.identifier.citationV.Dotsenko and J.Griffin, Cacti and filtered distributive laws, Algebraic and Geometric Topology, 14, 6, 2015, 3185-3225en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractMotivated by the second author’s construction of a classifying space for the group of pure symmetric automorphisms of a free product, we introduce and study a family of topological operads, the operads of based cacti, defined for every pointed simplicial set . Y ; p / . These operads also admit linear versions, which are defined for every augmented graded cocommutative coalgebra C . We show that the homology of the topological operad of based Y –cacti is the linear operad of based H . Y / –cacti. In addition, we show that for every coalgebra C the operad of based C –cacti is Koszul. To prove the latter result, we use the criterion of Koszulness for operads due to the first author, utilising the notion of a filtered distributive law between two quadratic operads. We also present a new proof of that criterion, which works over a ground field of arbitrary characteristicen
dc.format.extent3185-3225en
dc.relation.ispartofseriesAlgebraic and Geometric Topologyen
dc.relation.ispartofseries14en
dc.relation.ispartofseries6en
dc.rightsYen
dc.subjectcactien
dc.subject.lcshcactien
dc.titleCacti and filtered distributive lawsen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/dotsenkven
dc.identifier.rssinternalid80813en
dc.rights.ecaccessrightsopenAccess
dc.identifier.rssurihttp://dx.doi.org/10.2140/agt.2014.14.3185en
dc.identifier.orcid_id0000-0002-6949-5166en
dc.identifier.urihttp://hdl.handle.net/2262/73949


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record