dc.contributor.author | Colavita, Paula | en |
dc.date.accessioned | 2015-09-17T11:38:38Z | |
dc.date.available | 2015-09-17T11:38:38Z | |
dc.date.issued | 2015 | en |
dc.date.submitted | 2015 | en |
dc.identifier.citation | Marzorati, S.; Vasconcelos, J.M.; Ding, J.; Longhi, M.; Colavita, P.E., Template-free ultraspray pyrolysis synthesis of N/Fe-doped carbon microspheres for oxygen reduction electrocatalysis, Journal of Materials Chemistry A, 2015, 18920-18927 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | Ultrasonic spray pyrolysis was used in a continuous flow apparatus for the template-free synthesis of iron- and nitrogen-doped porous carbon materials. Solutions of glucose, histidine and Fe(CH3COO)2 were nebulized and pyrolyzed yielding carbon microspheres. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Focused Ion Beam (FIB) milling revealed that microspheres initially possess empty cores and a smooth shell. Further annealing leads to a collapse of this shell, and formation of porous microspheres with high roughness and iron-rich aggregates. X-ray Diffraction (XRD) and Photoelectron Spectroscopy (XPS) were used to investigate bulk and surface chemistry: microspheres were found to undergo graphitization; Fe and Fe3C particles form and become encapsulated within the carbon phase, while the nitrogen present in the precursor solution results in the formation of pyridinic/pyrrolic N-centers. The microspheres were tested as electrocatalysts for the oxygen reduction reaction (ORR) in acidic solution. Polarization curves using a Rotating Disk Electrode (RDE) yielded electrocatalytic behavior, and the number of exchanged electrons n = 3.7 ± 0.2 calculated from Koutecky–Levich plots suggests that direct formation of H2O is the preferred ORR mechanism. These results indicate that this synthetic approach offers a simple and scalable strategy for the preparation of electrode materials for polymer electrolyte membrane fuel cell | en |
dc.description.sponsorship | This work was supported by MIUR (Italy) under the Project NAMED-PEM (PRIN 2011). This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant Number 13/CDA/2213. Stefania Marzorati thanks the LLP Erasmus Placement for a grant; J. Vasconcelos acknowledges support from Science Foundation Ireland Grant No. 12/IP/1273; J. Ding acknowledges support from the IAESTE Programme. The authors thank Dr. Benedetta Sacchi for XPS measurements and Mr. David Hinds for his assistance with SEM imaging. | en |
dc.format.extent | 18920-18927 | en |
dc.relation.ispartofseries | Journal of Materials Chemistry A | en |
dc.rights | Y | en |
dc.subject | pyridinic/pyrrolic N-centers | en |
dc.subject.lcsh | pyridinic/pyrrolic N-centers | en |
dc.title | Template-free ultraspray pyrolysis synthesis of N/Fe-doped carbon microspheres for oxygen reduction electrocatalysis | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/colavitp | en |
dc.identifier.rssinternalid | 106059 | en |
dc.identifier.doi | http://dx.doi.org/10.1039/C5TA02570B | en |
dc.rights.ecaccessrights | openAccess | |
dc.identifier.orcid_id | 0000-0003-1008-2874 | en |
dc.contributor.sponsor | Science Foundation Ireland (SFI) | en |
dc.contributor.sponsorGrantNumber | 13/CDA/2213 | en |
dc.contributor.sponsor | Science Foundation Ireland (SFI) | en |
dc.contributor.sponsorGrantNumber | 12/IP/1273 | en |
dc.identifier.uri | http://hdl.handle.net/2262/74599 | |