dc.contributor.author | VOLIN, DMYTRO | en |
dc.date.accessioned | 2016-08-25T15:46:47Z | |
dc.date.available | 2016-08-25T15:46:47Z | |
dc.date.issued | 2015 | en |
dc.date.submitted | 2015 | en |
dc.identifier.citation | Marboe C., Volin D., Quantum spectral curve as a tool for a perturbative quantum field theory, Nuclear Physics B, 899, 2015, 810-847 | en |
dc.identifier.issn | 05503213 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | An iterative procedure perturbatively solving the quantum spectral curve of planar N=4N=4 SYM for any operator in the slsl(2) sector is presented. A Mathematica notebook executing this procedure is enclosed. The obtained results include 10-loop computations of the conformal dimensions of more than ten different operators.
We prove that the conformal dimensions are always expressed, at any loop order, in terms of multiple zeta-values with coefficients from an algebraic number field determined by the one-loop Baxter equation. We observe that all the perturbative results that were computed explicitly are given in terms of a smaller algebra: single-valued multiple zeta-values times the algebraic numbers. | en |
dc.format.extent | 810-847 | en |
dc.relation.ispartofseries | Nuclear Physics B | en |
dc.relation.ispartofseries | 899 | en |
dc.rights | Y | en |
dc.subject | planar N=4N=4 SYM | en |
dc.title | Quantum spectral curve as a tool for a perturbative quantum field theory | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/volind | en |
dc.identifier.rssinternalid | 108177 | en |
dc.identifier.doi | http://dx.doi.org/10.1016/j.nuclphysb.2015.08.021 | en |
dc.rights.ecaccessrights | openAccess | |
dc.identifier.orcid_id | 0000-0003-0445-3456 | en |
dc.identifier.uri | http://hdl.handle.net/2262/76887 | |