Show simple item record

dc.contributor.authorManschot, Janen
dc.date.accessioned2018-01-24T16:46:42Z
dc.date.available2018-01-24T16:46:42Z
dc.date.issued2018en
dc.date.submitted2018en
dc.identifier.citationSergey Alexandrov, Sibasish Banerjee, Jan Manschot, Boris Pioline, Indefinite theta series and generalised error functions, Selecta Mathematica, 2018, 3927 - 3972en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractTheta series for lattices with indefinite signature ( n + ,n − ) arise in many areas of mathematics including representation theory and enumerative algebraic geometry. Their mod- ular properties are well understood in the Lorentzian case ( n + = 1), but have remained obscure when n + ≥ 2. Using a higher-dimensional generalization of the usual (complementary) error function, discovered in an independent physics project, we construct the modular completion of a class of ‘conformal’ holomorphic theta series ( n + = 2). As an application, we determine the modular properties of a generalized Appell-Lerch sum attached to the lattice A 2 , which arose in the study of rank 3 vector bundles on P 2 . The extension of our method to n + > 2 is outlined.en
dc.format.extent3927en
dc.format.extent3972en
dc.language.isoenen
dc.relation.ispartofseriesSelecta Mathematicaen
dc.rightsYen
dc.subjectTheta seriesen
dc.titleIndefinite theta series and generalised error functionsen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/manschojen
dc.identifier.rssinternalid122618en
dc.rights.ecaccessrightsopenAccess
dc.identifier.rssurihttps://arxiv.org/abs/1606.05495en
dc.identifier.orcid_id0000-0002-6506-7084en
dc.identifier.urihttp://hdl.handle.net/2262/82265


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record