Show simple item record

dc.contributor.authorSUHR, NILS THORSTEN
dc.contributor.authorSchoenberg, Ronny
dc.contributor.authorChew, David
dc.contributor.authorRosca, Carolina
dc.contributor.authorWiddowson, Mike
dc.contributor.authorKamber, Balz S.
dc.date.accessioned2018-02-08T12:13:26Z
dc.date.available2018-02-08T12:13:26Z
dc.date.issued2018en
dc.date.submitted2018en
dc.identifier.citationNILS THORSTEN SUHR, Ronny Schoenberg, David Chew, Carolina Rosca, Mike Widdowson, Balz S. Kamber, 'Elemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils', 2018, Science of the Total Environment;, 619-620;en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractZinc (Zn) is a micronutrient for organisms and essential for plant growth, therefore knowledge of its elemental cycling in the surface environment is important regarding wider aspects of human nutrition and health. To explore the nature of Zn cycling, we compared its weathering behaviour in a sub-recent regolith versus an ancient laterite profile of the Deccan Traps, India – an area of known soil Zn deficiency.We demonstrate that progressive breakdown of primary minerals and the associated formation of phyllosilicates and iron oxides leads to a depletion in Zn, ultimately resulting in a loss of 80% in lateritic residues. This residue is mainly composed of resistant iron oxides and hydroxides ultimately delivering insufficient amounts of bio-available Zn. Moreover, (sub)-tropical weathering in regions experiencing extended tectonic quiescence (e.g., cratons) further enhance the development of old and deep soil profiles that become deficient in Zn. This situation is clearly revealed by the spatial correlation of the global distribution of laterites, cratons (Africa, India, South America and Australia) and known regions of Zn deficient soils that result in health problems for humans whose diet is derived from such land. We also investigate whether this elemental depletion of Zn is accompanied by isotope fractionation. In the saprolitic horizons of both weathering profiles, compositions of δ66ZnJMC-Lyon lie within the “crustal average” of +0.27±0.07‰δ66ZnJMC-Lyon. By contrast, soil horizons enriched in secondary oxides show lighter isotope compositions. The isotopic signature of Zn (Δ66Znsample-protolith up to ~−0.65‰) during the formation of the ferruginous- lateritic weathering profile likely resulted from a combination of biotically- and kinetically-controlled sorption reactions on Fe-oxyhydroxides. Our findings suggest that oxide rich soil types/horizons in (sub)-tropical regions likely exert a control on riverine Zn isotope compositions such that these becomeheavier than the crustal average. This isotopic behaviour invites a broader study of global soils to test whether light isotope composition alone could serve as an indicator for reduced bioavailability of Zn.en
dc.description.sponsorshipThis work is a contribution from the Marie Curie Initial Training Network IsoNose (www.IsoNose.eu) that is funded by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no [608069].en
dc.format.extent1451en
dc.format.extent1463en
dc.language.isoenen
dc.relation.ispartofseriesScience of the Total Environment;
dc.relation.ispartofseries619-620;
dc.rightsYen
dc.subjectZn deficiency, Soil, India, Hidden Hunger, Malnutritionen
dc.titleElemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soilsen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/nsuhr
dc.identifier.rssinternalid182649
dc.rights.ecaccessrightsopenAccess
dc.status.accessibleNen
dc.contributor.sponsorMarie Curieen
dc.contributor.sponsorGrantNumber608069en
dc.identifier.urihttp://hdl.handle.net/2262/82335


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record