Show simple item record

dc.contributor.authorKenny, Eamonn
dc.contributor.authorKrylov, Vladimir
dc.contributor.authorDahyot, Rozenn
dc.date.accessioned2019-10-09T09:03:30Z
dc.date.available2019-10-09T09:03:30Z
dc.date.issued2018
dc.date.submitted2018en
dc.identifier.citationKenny, E., Krylov, V., Dahyot, R. Automatic Discovery and Geotagging of Objects from Street View Imagery, Remote Sensing, 2018, 10, 5, 661en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractMany applications, such as autonomous navigation, urban planning, and asset monitoring, rely on the availability of accurate information about objects and their geolocations. In this paper, we propose the automatic detection and computation of the coordinates of recurring stationary objects of interest using street view imagery. Our processing pipeline relies on two fully convolutional neural networks: the first segments objects in the images, while the second estimates their distance from the camera. To geolocate all the detected objects coherently we propose a novel custom Markov random field model to estimate the objects’ geolocation. The novelty of the resulting pipeline is the combined use of monocular depth estimation and triangulation to enable automatic mapping of complex scenes with the simultaneous presence of multiple, visually similar objects of interest. We validate experimentally the effectiveness of our approach on two object classes: traffic lights and telegraph poles. The experiments report high object recall rates and position precision of approximately 2 m, which is approaching the precision of single-frequency GPS receivers.en
dc.format.extent661en
dc.language.isoenen
dc.relation.ispartofseriesRemote Sensing;
dc.relation.ispartofseries10;
dc.relation.ispartofseries5;
dc.rightsYen
dc.subjectObject geolocationen
dc.subjectObject mappingen
dc.subjectStreet view imageryen
dc.subjectMarkov random fieldsen
dc.subjectTraffic lightsen
dc.subjectTelecom assetsen
dc.subjectGPS estimationen
dc.titleAutomatic Discovery and Geotagging of Objects from Street View Imageryen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/dahyotr
dc.identifier.peoplefinderurlhttp://people.tcd.ie/krylovv
dc.identifier.peoplefinderurlhttp://people.tcd.ie/ekenny
dc.identifier.rssinternalid193038
dc.identifier.doihttp://dx.doi.org/10.3390/rs10050661
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDThemeSmart & Sustainable Planeten
dc.subject.TCDThemeTelecommunicationsen
dc.subject.TCDTagCOLOUR OBJECT DETECTIONen
dc.subject.TCDTagComputer Vision and Image Processingen
dc.subject.TCDTagData Analysisen
dc.subject.TCDTagInformation technology in educationen
dc.subject.TCDTagdeep learningen
dc.identifier.rssurihttps://www.mdpi.com/2072-4292/10/5/661/htm
dc.identifier.orcid_id0000-0003-0983-3052
dc.subject.darat_thematicCommunicationen
dc.subject.darat_thematicDevelopmenten
dc.subject.darat_thematicEnvironment and housingen
dc.status.accessibleNen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.contributor.sponsorGrantNumber13/RC/2106en
dc.contributor.sponsorScience Foundation Irelanden
dc.contributor.sponsorGrantNumber13/RC/2106en
dc.identifier.urihttp://hdl.handle.net/2262/89654


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record