Show simple item record

dc.contributor.authorSanvito, Stefanoen
dc.contributor.authorTiwari, Rajarshien
dc.date.accessioned2019-11-01T10:47:38Z
dc.date.available2019-11-01T10:47:38Z
dc.date.issued2019en
dc.date.submitted2019en
dc.identifier.citationNelson J, Tiwari R, Sanvito S, Machine learning density functional theory for the Hubbard model, Physical Review B, 99, 7, 2019en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractThe solution of complex many-body lattice models can often be found by defining an energy functional of the relevant density of the problem. For instance, in the case of the Hubbard model the spin-resolved site occupation is enough to describe the system’s total energy. Similarly to standard density functional theory, however, the exact functional is unknown, and suitable approximations need to be formulated. By using a deep-learning neural network trained on exact-diagonalization results, we demonstrate that one can construct an exact functional for the Hubbard model. In particular, we show that the neural network returns a ground-state energy numerically indistinguishable from that obtained by exact diagonalization and, most importantly, that the functional satisfies the two Hohenberg-Kohn theorems: for a given ground-state density it yields the external potential, and it is fully variational in the site occupationen
dc.language.isoenen
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseries99en
dc.relation.ispartofseries7en
dc.rightsYen
dc.subjectLattice modelsen
dc.subjectDensity functional calculationsen
dc.subjectDensity functional theoryen
dc.subjectHubbard modelen
dc.titleMachine learning density functional theory for the Hubbard modelen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/sanvitosen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/tiwariren
dc.identifier.rssinternalid204035en
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevB.99.075132en
dc.rights.ecaccessrightsopenAccess
dc.identifier.rssurihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061964808&doi=10.1103%2fPhysRevB.99.075132&partnerID=40&md5=442ed8a851ee708efedf22d1685f6cc4en
dc.identifier.orcid_id0000-0002-0291-715Xen
dc.contributor.sponsorEuropean Research Council (ERC)en
dc.contributor.sponsorGrantNumberQUESTen
dc.contributor.sponsorIrish Research Council (IRC)en
dc.contributor.sponsorGrantNumberGOIPG/2016/1056en
dc.contributor.sponsorSFI/HEA Irish Centre for High-End Computing (ICHEC)en
dc.identifier.urihttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.075132
dc.identifier.urihttp://hdl.handle.net/2262/89982


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record