Show simple item record

dc.contributor.advisorGhosh, Bidisha
dc.contributor.authorDunne, Stephen
dc.date.accessioned2019-11-05T16:50:53Z
dc.date.available2019-11-05T16:50:53Z
dc.date.issued2013
dc.identifier.citationStephen Dunne, 'Short-term traffic condition variables forecasting using Artificial Neural Networks', [thesis], Trinity College (Dublin, Ireland). Department of Civil, Structural and Environmental Engineering, 2013, pp 203
dc.identifier.otherTHESIS 10274
dc.description.abstractShort-term traffic forecasting (STTF) is a critical element of Intelligent Transport Systems (ITS). The use of ITS is vital in order to ensure the sustainability and increase the efficiency of the transportation network. ITS bases decisions on traffic conditions and so it can only be effective if the forecasted future traffic conditions provided are accurate.
dc.format1 volume
dc.language.isoen
dc.publisherTrinity College (Dublin, Ireland). Department of Civil, Structural and Environmental Engineering
dc.relation.isversionofhttp://stella.catalogue.tcd.ie/iii/encore/record/C__Rb15651559
dc.subjectCivil, Structural and Environmental Engineering
dc.subjectPh.D. Trinity College Dublin.
dc.titleShort-term traffic condition variables forecasting using Artificial Neural Networks
dc.typethesis
dc.type.supercollectionthesis_dissertations
dc.type.supercollectionrefereed_publications
dc.type.qualificationlevelDoctoral
dc.type.qualificationnameDoctor of Philosophy (Ph.D.)
dc.rights.ecaccessrightsopenAccess
dc.format.extentpaginationpp 203
dc.description.noteTARA (Trinity’s Access to Research Archive) has a robust takedown policy. Please contact us if you have any concerns: rssadmin@tcd.ie
dc.identifier.urihttp://hdl.handle.net/2262/90116


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record