Show simple item record

dc.contributor.authorWilson, Simon
dc.contributor.authorRau, Marcus Michael
dc.contributor.authorMandelbaum, Rachel
dc.date.accessioned2019-12-20T11:32:49Z
dc.date.available2019-12-20T11:32:49Z
dc.date.issued2019
dc.date.submitted2019en
dc.identifier.citationRau, M.M., Mandelbaum, R. & Wilson, S., Estimating redshift distributions using Hierarchical Logistic Gaussian processes, Monthly Notices of the Royal Astronomical Society, 2019en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractThis work uses hierarchical logistic Gaussian processes to infer true redshift distributions of samples of galaxies, through their cross-correlations with spatially overlapping spectroscopic samples. We demonstrate that this method can accurately estimate these redshift distributions in a fully Bayesian manner jointly with galaxy-dark matter bias models. We forecast how systematic biases in the redshift-dependent galaxy-dark matter bias model affect redshift inference. Using published galaxy-dark matter bias measurements from the Illustris simulation, we compare these systematic biases with the statistical error budget from a forecasted weak gravitational lensing measurement. If the redshift-dependent galaxy-dark matter bias model is mis-specified, redshift inference can be biased. This can propagate into relative biases in the weak lensing convergence power spectrum on the 10–30 per cent level. We, therefore, showcase a methodology to detect these sources of error using Bayesian model selection techniques. Furthermore, we discuss the improvements that can be gained from incorporating prior information from Bayesian template fitting into the model, both in redshift prediction accuracy and in the detection of systematic modelling biases.en
dc.language.isoenen
dc.relation.ispartofseriesMonthly Notices of the Royal Astronomical Society;
dc.rightsYen
dc.subjectGalaxiesen
dc.subjectDistances and redshiftsen
dc.subjectCataloguesen
dc.subjectSurveysen
dc.subjectCorrelation functionsen
dc.titleEstimating redshift distributions using Hierarchical Logistic Gaussian processesen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/swilson
dc.identifier.rssinternalid209473
dc.identifier.doi10.1093/mnras/stz3295
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDTagCOSMOLOGYen
dc.subject.TCDTagData Analysisen
dc.identifier.orcid_id0000-0003-0312-3586
dc.status.accessibleNen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.identifier.urihttps://academic.oup.com/mnras/article/491/4/4768/5643932
dc.identifier.urihttp://hdl.handle.net/2262/91214


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record