Mapping Conformational Changes in a Self-Assembled Two-Dimensional Molecular Network by Statistical Analysis of Conductance Images

File Type:
PDFItem Type:
Journal ArticleDate:
2019Access:
openAccessCitation:
Borislav Naydenov, Samuel Torsney, Alejandro Santana Bonilla, Andrea Gualandi, Luca Mengozzi, Pier Giorgio Cozzi, Rafael Gutierrez, Gianaurelio Cuniberti, and John J. Boland, Mapping Conformational Changes in a Self-Assembled Two-Dimensional Molecular Network by Statistical Analysis of Conductance Images, PHYSICAL REVIEW APPLIED, 11, 03, 2019, 034070-1 - 034070-7Download Item:
Abstract:
A self-assembled two-dimensional (2D) film of tetra-phenyl-porphyrin-4-ferrocene molecules on Au(111) is studied by STM for the presence of intra- and intermolecular correlations in the configurations of the four-pendant ferrocenyl moieties. A statistical analysis of STS images exploits the Pearson’s linear correlation coefficient derived from changes in the molecular electron density across lateral positions in the molecular network as a measure of the intra- and intermolecular coupling and/or conjugation between adjacent equivalent molecular components. Density functional theory (DFT) calculation shows that these electron density changes can be assigned to conformational changes of the ferrocenyl units of the molecules. The methodology presented here can be extended to measure correlations in other 2D systems.
URI:
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.034070http://hdl.handle.net/2262/91465
Sponsor
Grant Number
European Union Framework Programme 7 (FP7)
ICT-MOLARNET (318516).
Author's Homepage:
http://people.tcd.ie/naydenobhttp://people.tcd.ie/jboland
Description:
PUBLISHED
Author: Naydenov, Borislav; Boland, John
Sponsor:
European Union Framework Programme 7 (FP7)Type of material:
Journal ArticleURI:
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.034070http://hdl.handle.net/2262/91465
Collections
Series/Report no:
PHYSICAL REVIEW APPLIED11
03
Availability:
Full text availableSubject:
Density of states, Organic electronics, Self-assembly, 2-dimensional systems, Molecular solids, Ultrathin films, Data analysis, Scanning tunneling spectroscopySubject (TCD):
Nanoscience & Materials , Molecular electronicsDOI:
http://dx.doi.org/10.1103/PhysRevApplied.11.034070Metadata
Show full item recordThe following license files are associated with this item: