Show simple item record

dc.contributor.authorZAITSEV, DMITRI
dc.contributor.authorEbenfelt, Peter
dc.contributor.authorNgoc Son, Duong
dc.date.accessioned2020-03-10T15:17:57Z
dc.date.available2020-03-10T15:17:57Z
dc.date.issued2018
dc.date.submitted2018en
dc.identifier.citationEbenfelt, P., Ngoc Son, D. & Zaitsev, D., A family of compact strictly pseudoconvex hypersurfaces in C2 without umbilical points, Mathematical Research Letters, 25, 1, 2018, 75-84en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractWe prove the following: For ϵ>0, let Dϵ be the bounded strictly pseudoconvex domain in ℂ2 given by (log|z|)2+(log|w|)2<ϵ2. The boundary Mϵ:=∂Dϵ⊂ℂ2 is a compact strictly pseudoconvex CR manifold without umbilical points. This resolves a long-standing question in complex analysis that goes back to the work of S.-S. Chern and J. K. Moser in 1974.en
dc.format.extent75-84en
dc.language.isoenen
dc.relation.ispartofseriesMathematical Research Letters;
dc.relation.ispartofseries25;
dc.relation.ispartofseries1;
dc.rightsYen
dc.subjectComplex variablesen
dc.subjectPseudoconvex hypersurfacesen
dc.titleA family of compact strictly pseudoconvex hypersurfaces in C^2 without umbilical pointsen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/zaitsevd
dc.identifier.rssinternalid168500
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDTagPure mathematicsen
dc.subject.TCDTagSeveral Complex Variablesen
dc.status.accessibleNen
dc.identifier.urihttps://arxiv.org/abs/1609.02415
dc.identifier.urihttp://hdl.handle.net/2262/91752


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record