dc.contributor.author | ZAITSEV, DMITRI | |
dc.contributor.author | Ebenfelt, Peter | |
dc.contributor.author | Ngoc Son, Duong | |
dc.date.accessioned | 2020-03-10T15:17:57Z | |
dc.date.available | 2020-03-10T15:17:57Z | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018 | en |
dc.identifier.citation | Ebenfelt, P., Ngoc Son, D. & Zaitsev, D., A family of compact strictly pseudoconvex hypersurfaces in C2 without umbilical points, Mathematical Research Letters, 25, 1, 2018, 75-84 | en |
dc.identifier.other | Y | |
dc.description | PUBLISHED | en |
dc.description.abstract | We prove the following: For ϵ>0, let Dϵ be the bounded strictly pseudoconvex domain in ℂ2 given by
(log|z|)2+(log|w|)2<ϵ2.
The boundary Mϵ:=∂Dϵ⊂ℂ2 is a compact strictly pseudoconvex CR manifold without umbilical points. This resolves a long-standing question in complex analysis that goes back to the work of S.-S. Chern and J. K. Moser in 1974. | en |
dc.format.extent | 75-84 | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Mathematical Research Letters; | |
dc.relation.ispartofseries | 25; | |
dc.relation.ispartofseries | 1; | |
dc.rights | Y | en |
dc.subject | Complex variables | en |
dc.subject | Pseudoconvex hypersurfaces | en |
dc.title | A family of compact strictly pseudoconvex hypersurfaces in C^2 without umbilical points | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/zaitsevd | |
dc.identifier.rssinternalid | 168500 | |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTag | Pure mathematics | en |
dc.subject.TCDTag | Several Complex Variables | en |
dc.status.accessible | N | en |
dc.identifier.uri | https://arxiv.org/abs/1609.02415 | |
dc.identifier.uri | http://hdl.handle.net/2262/91752 | |