dc.contributor.author | Britto, Ruth | en |
dc.date.accessioned | 2020-03-21T11:35:57Z | |
dc.date.available | 2020-03-21T11:35:57Z | |
dc.date.issued | 2020 | en |
dc.date.submitted | 2020 | en |
dc.identifier.citation | Samuel Abreu, Ruth Britto, Claude Duhr, Einan Gardi, James Matthew, From positive geometries to a coaction on hypergeometric functions, Journal of High Energy Physics, 2020 | en |
dc.identifier.issn | 1029-8479 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | It is well known that Feynman integrals in dimensional regularization often evaluate to functions of hypergeometric type. Inspired by a recent proposal for a coaction on one-loop Feynman integrals in dimensional regularization, we use intersection numbers and twisted homology theory to define a coaction on certain hypergeometric functions. The functions we consider admit an integral representation where both the integrand and the contour of integration are associated with positive geometries. As in dimensionally- regularized Feynman integrals, endpoint singularities are regularized by means of expo- nents controlled by a small parameter ε. We show that the coaction defined on this class of integral is consistent, upon expansion in ε, with the well-known coaction on multiple polylogarithms. We illustrate the validity of our construction by explicitly determining the coaction on various types of hypergeometric p+1Fp and Appell functions. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Journal of High Energy Physics | en |
dc.rights | Y | en |
dc.subject | Scattering Amplitudes | en |
dc.subject | Perturbative QCD | en |
dc.title | From positive geometries to a coaction on hypergeometric functions | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/brittor | en |
dc.identifier.rssinternalid | 212518 | en |
dc.identifier.doi | https://doi.org/10.1007/JHEP02(2020)122 | en |
dc.relation.ecprojectid | info:eu-repo/grantAgreement/EC/FP7/647356 | |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTag | Algebra | en |
dc.subject.TCDTag | Theoretical Physics | en |
dc.identifier.rssuri | http://inspirehep.net/record/1759664?ln=en | en |
dc.identifier.rssuri | https://arxiv.org/abs/1910.08358 | en |
dc.identifier.orcid_id | 0000-0003-2462-6481 | en |
dc.status.accessible | N | en |
dc.contributor.sponsor | European Research Council (ERC) | en |
dc.contributor.sponsorGrantNumber | 647356 | en |
dc.contributor.sponsor | European Research Council (ERC) | en |
dc.contributor.sponsorGrantNumber | 637019 | en |
dc.contributor.sponsor | Other | en |
dc.identifier.uri | http://hdl.handle.net/2262/91848 | |