Show simple item record

dc.contributor.authorVogel, Carl
dc.date.accessioned2020-12-14T12:32:49Z
dc.date.available2020-12-14T12:32:49Z
dc.date.issued2020
dc.date.submitted2020en
dc.identifier.citationDzendzik, D., Vogel, C., Foster, J., Q. Can Knowledge Graphs be used to Answer Boolean Questions? A. It's complicated!, Proceedings of the First Workshop on Insights from Negative Results in NLP, Association for Computational Linguistics, 2020, 6-14en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractIn this paper we explore the problem of machine reading comprehension, focusing on the BoolQ dataset of Yes/No questions. We carryout an error analysis of a BERT-based machine reading comprehension model on this dataset, revealing issues such as unstable model behaviour and some noise within the dataset itself. We then experiment with two approaches for integrating information from knowledge graphs: (i) concatenating knowledge graph triples to text passages and (ii) encoding knowledge with a Graph Neural Network. Neither of these approaches show a clear improvement and we hypothesize that this may be due to a combination of inaccuracies in the knowledge graph, imprecision in entity linking, and the models’ inability to capture additional information from knowledge graphs.en
dc.format.extent6-14en
dc.language.isoenen
dc.publisherAssociation for Computational Linguisticsen
dc.rightsYen
dc.subjectModel behaviouren
dc.subjectKnowledge graphsen
dc.subjectGraph Neural Networken
dc.subjectBoolQ dataseten
dc.subjectBERT-based machine reading comprehension modelen
dc.titleQ. Can Knowledge Graphs be used to Answer Boolean Questions? A. It's complicated!en
dc.title.alternativeFirst Workshop on Insights from Negative Results in NLPen
dc.typeConference Paperen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/vogel
dc.identifier.rssinternalid222296
dc.identifier.doihttps://doi.org/10.18653/v1/2020.insights-1.2
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDThemeDigital Engagementen
dc.subject.TCDTagComputational Linguisticsen
dc.subject.TCDTagComputational linguisticsen
dc.subject.TCDTagMACHINE LEARNINGen
dc.subject.TCDTagMachine Learning in Mulitmedia Information Retrievalen
dc.subject.TCDTagcomputational linguisticsen
dc.subject.TCDTagsignal processing and machine learningen
dc.identifier.rssurihttps://www.aclweb.org/anthology/2020.insights-1.2
dc.identifier.orcid_id0000-0001-8928-8546
dc.status.accessibleNen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.contributor.sponsorGrantNumber13/RC/2106en
dc.identifier.urihttp://hdl.handle.net/2262/94388


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record