dc.contributor.author | Caffrey, David | en |
dc.contributor.author | Shvets, Igor | en |
dc.date.accessioned | 2021-01-20T15:44:02Z | |
dc.date.available | 2021-01-20T15:44:02Z | |
dc.date.issued | 2020 | en |
dc.date.submitted | 2020 | en |
dc.identifier.citation | Ionov A.M., Chekmazov S.V., Usov V., Nesterova M.¿., Aronin A.S., Semenov V.N., Shvets I.V., Bozhko S.I., Deformation and fracture of crystalline tungsten and fabrication of composite STM probes, Ultramicroscopy, 218, 2020 | en |
dc.identifier.issn | 18792723 03043991 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | Fracturing microscale constrictions in metallic wires, such as tungsten, platinum, or platinum-iridium, is a common fabrication method used to produce atomically sharp tips for scanning tunneling microscopy (STM), field-emission microscopy and field ion microscopy. Typically, a commercial polycrystalline drawn wire is locally thinned and then fractured by means of a dislocation slip inside the constriction. We examine a special case where a dislocation-free microscale constriction is created and fractured in a single crystal tungsten rod with a long side parallel to the [100] direction. In the absence of dislocations, vacancies become the main defects in the constriction which breaks under the tensile stress of approximately 10 GPa, which is close to the theoretical fracture strength for an ideal monocrystalline tungsten. We propose that the vacancies are removed early in the tensile test by means of deformation annealing, creating a defect-free tungsten constriction which cleaves along the W(100) plane. This approach enables fabrication of new composite STM probes which demonstrate excellent stability, atomic resolution and magnetic contrast that cannot be attained using conventional methods. | en |
dc.description.sponsorship | The work was partially supported by RFBR Grant 19-29-03021. Financial support of the state assignment of the Institute of Solid State Physics of Russian Academy of Sciences is gratefully acknowledged. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Ultramicroscopy | en |
dc.relation.ispartofseries | 218 | en |
dc.rights | Y | en |
dc.subject | Scanning tunneling microscopy (STM) | en |
dc.subject | STM probe preparation | en |
dc.subject | Tension test | en |
dc.subject | Vacancies | en |
dc.subject | Fracture mechanism | en |
dc.subject | Spin-sensitive composite probe | en |
dc.title | Deformation and fracture of crystalline tungsten and fabrication of composite STM probes | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/caffreda | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/ivchvets | en |
dc.identifier.rssinternalid | 222952 | en |
dc.identifier.doi | http://dx.doi.org/10.1016/j.ultramic.2020.113083 | en |
dc.rights.ecaccessrights | openAccess | |
dc.identifier.uri | http://hdl.handle.net/2262/94738 | |