Show simple item record

dc.contributor.authorSmolic, Aljosa
dc.date.accessioned2021-03-11T21:57:51Z
dc.date.available2021-03-11T21:57:51Z
dc.date.issued2020
dc.date.submitted2020en
dc.identifier.citationOzcinar, C., İmamoğlu, N., Wang, W., Smolic, A., Delivery of omnidirectional video using saliency prediction and optimal bitrate allocation, Signal, Image and Video Processing (2020)en
dc.identifier.otherY
dc.description.abstractIn this work, we propose and investigate a user-centric framework for the delivery of omnidirectional video (ODV) on VR systems by taking advantage of visual attention (saliency) models for bitrate allocation module. For this purpose, we formulate a new bitrate allocation algorithm that takes saliency map and nonlinear sphere-to-plane mapping into account for each ODV and solve the formulated problem using linear integer programming. For visual attention models, we use both image- and video-based saliency prediction results; moreover, we explore two types of attention model approaches: (i) salient object detection with transfer learning using pre-trained networks, (ii) saliency prediction with supervised networks trained on eye-fixation dataset. Experimental evaluations on saliency integration of models are discussed with interesting findings on transfer learning and supervised saliency approaches.en
dc.language.isoenen
dc.relation.ispartofseriesSpringer Signal, Image and Video Processing;
dc.relation.urihttps://doi.org/10.1007/s11760-020-01769-2en
dc.relation.urihttps://link.springer.com/article/10.1007/s11760-020-01769-2en
dc.rightsYen
dc.subject360°video streamingen
dc.subjectAttention based bit- rate allocationen
dc.subjectSaliency maps with transfer learning and supervisionen
dc.titleDelivery of omnidirectional video using saliency prediction and optimal bitrate allocationen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/smolica
dc.identifier.rssinternalid225424
dc.identifier.doi10.1007/s11760-020-01769-2
dc.rights.ecaccessrightsopenAccess
dc.relation.citesCitesen
dc.relation.citesCitesen
dc.subject.TCDThemeCreative Arts Practiceen
dc.subject.TCDThemeCreative Technologiesen
dc.subject.TCDThemeDigital Engagementen
dc.subject.TCDTagImage Processingen
dc.subject.TCDTagInformation technology in educationen
dc.subject.TCDTagMultimedia & Creativityen
dc.identifier.rssuridoi:https://doi.org/10.1007/s11760-020-01769-2
dc.subject.darat_impairmentOtheren
dc.status.accessibleNen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.contributor.sponsorGrantNumber15/RP/2776en
dc.identifier.urihttp://hdl.handle.net/2262/95651


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record