Show simple item record

dc.contributor.authorMc Elwain, Jenniferen
dc.date.accessioned2021-07-06T13:48:35Z
dc.date.available2021-07-06T13:48:35Z
dc.date.issued2019en
dc.date.submitted2019en
dc.identifier.citationMurray M., Soh W.K., Yiotis C., Batke S., Parnell A.C., Spicer R.A., Lawson T., Caballero R., Wright I.J., Purcell C., McElwain J.C., Convergence in maximum stomatal conductance of C3 woody angiosperms in natural ecosystems across bioclimatic zones, Frontiers in Plant Science, 10, 2019en
dc.identifier.issn1664462Xen
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractStomatal conductance (gs) in terrestrial vegetation regulates the uptake of atmospheric carbon dioxide for photosynthesis and water loss through transpiration, closely linking the biosphere and atmosphere and influencing climate. Yet, the range and pattern of gs in plants from natural ecosystems across broad geographic, climatic, and taxonomic ranges remains poorly quantified. Furthermore, attempts to characterize gs on such scales have predominantly relied upon meta-analyses compiling data from many different studies. This approach may be inherently problematic as it combines data collected using unstandardized protocols, sometimes over decadal time spans, and from different habitat groups. Using a standardized protocol, we measured leaf-level gs using porometry in 218 C3 woody angiosperm species in natural ecosystems representing seven bioclimatic zones. The resulting dataset of 4273 gs measurements, which we call STraits (Stomatal Traits), was used to determine patterns in maximum gs (gsmax) across bioclimatic zones and whether there was similarity in the mean gsmax of C3 woody angiosperms across ecosystem types. We also tested for differential gsmax in two broadly defined habitat groups – open-canopy and understory-subcanopy – within and across bioclimatic zones. We found strong convergence in mean gsmax of C3 woody angiosperms in the understory-subcanopy habitats across six bioclimatic zones, but not in open-canopy habitats. Mean gsmax in open-canopy habitats (266 ± 100 mmol m-2 s-1) was significantly higher than in understory-subcanopy habitats (233 ± 86 mmol m-2 s-1). There was also a central tendency in the overall dataset to operate toward a gsmax of ∼250 mmol m-2 s-1. We suggest that the observed convergence in mean gsmax of C3 woody angiosperms in the understory-subcanopy is due to a buffering of gsmax against macroclimate effects which will lead to differential response of C3 woody angiosperm vegetation in these two habitats to future global change. Therefore, it will be important for future studies of gsmax to categorize vegetation according to habitat group.en
dc.language.isoenen
dc.relation.ispartofseriesFrontiers in Plant Scienceen
dc.relation.ispartofseries10en
dc.rightsYen
dc.subjectBiomesen
dc.subjectConvergenceen
dc.subjectHabitaten
dc.subjectMaximum stomatal conductanceen
dc.subjectNatural ecosystemsen
dc.subjectUnderstoryen
dc.subjectVarianceen
dc.subjectWoody angiospermsen
dc.titleConvergence in maximum stomatal conductance of C3 woody angiosperms in natural ecosystems across bioclimatic zonesen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/jmcelwaien
dc.identifier.rssinternalid206869en
dc.identifier.doihttp://dx.doi.org/10.3389/fpls.2019.00558en
dc.rights.ecaccessrightsopenAccess
dc.identifier.orcid_id0000-0002-1729-6755en
dc.identifier.urihttp://hdl.handle.net/2262/96717


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record