Show simple item record

dc.contributor.authorBuckley, Conor
dc.contributor.authorKelly, Daniel
dc.date.accessioned2022-02-03T16:49:06Z
dc.date.available2022-02-03T16:49:06Z
dc.date.issued2021en
dc.date.submitted2021en
dc.identifier.citationConor Buckley, Daniel Kelly, 'Measuring and Modeling Oxygen Transport and Consumption in 3D Hydrogels Containing Chondrocytes and Stem Cells of Different Tissue Origins.', 2021, Frontiers in bioengineering and biotechnology;, 9;en
dc.identifier.issn2296-4185
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractUnderstanding how the local cellular environment influences cell metabolism, phenotype and matrix synthesis is crucial to engineering functional tissue grafts of a clinically relevant scale. The objective of this study was to investigate how the local oxygen environment within engineered cartilaginous tissues is influenced by factors such as cell source, environmental oxygen tension and the cell seeding density. Furthermore, the subsequent impact of such factors on both the cellular oxygen consumption rate and cartilage matrix synthesis were also examined. Bone marrow derived stem cells (BMSCs), infrapatellar fat pad derived stem cells (FPSCs) and chondrocytes (CCs) were seeded into agarose hydrogels and stimulated with transforming growth factor-β3 (TGF- β3). The local oxygen concentration was measured within the center of the constructs, and numerical modeling was employed to predict oxygen gradients and the average oxygen consumption rate within the engineered tissues. The cellular oxygen consumption rate of hydrogel encapsulated CCs remained relatively unchanged with time in culture. In contrast, stem cells were found to possess a relatively high initial oxygen consumption rate, but adopted a less oxidative, more chondrocyte-like oxygen consumption profile following chondrogenic differentiation, resulting in net increases in engineered tissue oxygenation. Furthermore, a greater reduction in oxygen uptake was observed when the oxygen concentration of the external cell culture environment was reduced. In general, cartilage matrix deposition was found to be maximal in regions of low oxygen, but collagen synthesis was inhibited in very low (less than 2%) oxygen regions. These findings suggest that promoting an oxygen consumption profile similar to that of chondrocytes might be considered a key determinant to the success of stem cell-based cartilage tissue engineering strategiesen
dc.format.extent591126en
dc.language.isoenen
dc.relation.ispartofseriesFrontiers in bioengineering and biotechnology;
dc.relation.ispartofseries9;
dc.rightsYen
dc.subjecttissue graftsen
dc.subjectfat pad derived stem cells (FPSCs)en
dc.subjectchondrocytes (CCs)en
dc.subject.lcshtissue graftsen
dc.subject.lcshfat pad derived stem cells (FPSCs)en
dc.subject.lcshchondrocytes (CCs)en
dc.titleMeasuring and Modeling Oxygen Transport and Consumption in 3D Hydrogels Containing Chondrocytes and Stem Cells of Different Tissue Origins.en
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/kellyd9
dc.identifier.peoplefinderurlhttp://people.tcd.ie/cbuckle
dc.identifier.rssinternalid235306
dc.identifier.doihttp://dx.doi.org/10.3389/fbioe.2021.591126
dc.rights.ecaccessrightsopenAccess
dc.identifier.orcid_id0000-0003-4091-0992
dc.contributor.sponsorScience Foundation Irelanden
dc.contributor.sponsorGrantNumber08/YI5/B1336en
dc.identifier.urihttp://hdl.handle.net/2262/98034


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record