Show simple item record

dc.contributor.authorKeany, Eoghan
dc.contributor.authorBessardon, Geoffrey
dc.contributor.authorGleeson, Emily
dc.date.accessioned2022-05-04T11:02:17Z
dc.date.available2022-05-04T11:02:17Z
dc.date.issued2022-05-02
dc.identifier.citationEoghan Keany, Geoffrey Bessardon, Emily Gleeson, 'Using machine learning to produce a cost-effective national building height map of Ireland to categorise local climate zones', [article], Met Éireann, 2022-05-02
dc.descriptionIn numerical weather prediction (NWP) the estimation of the different surface fluxes (radiative and non-radiative) requires surface parameters calculated from land cover map information. Estimating these fluxes is essential for weather prediction as most of the atmospheric energy and water exchanges happen at the surface. A land cover map represents identifiable elements that the map producer wants to distinguish and is created using a mixture of remotely-sensed and in-situ observations. Land cover elements include, for example, the types of forest, crops, urban density and so on.en
dc.language.isoenen
dc.publisherMet Éireannen
dc.relation.isversionofhttps://doi.org/10.5194/asr-19-13-2022, 2022
dc.rightsYen
dc.subjectClimate zonesen
dc.subjectMachine learningen
dc.subjectHeight mapen
dc.titleUsing machine learning to produce a cost-effective national building height map of Ireland to categorise local climate zonesen
dc.typearticleen
dc.type.supercollectionedepositireland
dc.contributor.corporatenameMet Éireannen
dc.publisher.placeirelanden
dc.rights.ecaccessrightsopenAccess
dc.identifier.urihttp://hdl.handle.net/2262/98528


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record