dc.contributor.author | Romero-Ortuno, Roman | en |
dc.contributor.author | Knight, Silvin | en |
dc.date.accessioned | 2022-11-01T09:15:33Z | |
dc.date.available | 2022-11-01T09:15:33Z | |
dc.date.created | November 3-6 | en |
dc.date.issued | 2022 | en |
dc.date.submitted | 2022 | en |
dc.identifier.citation | Donal J. Sexton, Roman Romero-Ortuno, Silvin P. Knight, Rozenn Dahyot, Rose Anne Kenny, Ali Karaali, Deep Learning Retinal Image Analysis for the Detection of CKD and Cardiovascular Risk Factors in the General Population, American Society of Nephrology (ASN) Kidney Week 2022, Orlando, FL, November 3-6, 2022 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description | Orlando, FL | en |
dc.description.abstract | Background: Retinal blood vessel patterns provide an opportunity to personalize an individuals risk
assessment for CKD and cardiovascular risk factors (CVRF). In this study we propose a deep
learning (DL) based prediction tool that uses retinal images from the Irish Longitudinal Study on
Ageing (TILDA) to detect the existence of CKD in community dwelling individuals aged 50
years and over.
Methods: TILDA is a stratified random sample of the general population of Ireland. N=4569 participants
underwent a detailed health assessment including retinal photography. We developed a
convolutional neural network architecture inputting a single retinal image per participant for the
prediction of CKD & CVRF. Binary cross entropy was used as a loss function. Analyses were
conducted on the FRAILMatics HPC “Tinney”.
Results: See Table 1 & Image 1 for results.
Conclusion: A DL retinal image algorithm has good discrimination for CKD, eGFR and CVRF in community dwelling individuals. The prediction emphasis of our DL algorithm focuses on slightly different structures within the retinal image to predict serum creatinine versus serum cystatin. | en |
dc.language.iso | en | en |
dc.rights | Y | en |
dc.title | Deep Learning Retinal Image Analysis for the Detection of CKD and Cardiovascular Risk Factors in the General Population | en |
dc.title.alternative | American Society of Nephrology (ASN) Kidney Week 2022 | en |
dc.type | Poster | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/romeroor | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/siknight | en |
dc.identifier.rssinternalid | 247513 | en |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTheme | Ageing | en |
dc.subject.TCDTheme | Digital Engagement | en |
dc.identifier.rssuri | https://www.asn-online.org/education/kidneyweek/2022/program-abstract.aspx?controlId=3766158 | en |
dc.identifier.orcid_id | 0000-0002-3882-7447 | en |
dc.subject.darat_impairment | Age-related disability | en |
dc.subject.darat_impairment | Chronic Health Condition | en |
dc.subject.darat_impairment | Visual impairment | en |
dc.subject.darat_thematic | Health | en |
dc.subject.darat_thematic | Third age/ageing | en |
dc.status.accessible | N | en |
dc.contributor.sponsor | Science Foundation Ireland (SFI) | en |
dc.contributor.sponsorGrantNumber | 18/FRL/6188 | en |
dc.identifier.uri | http://hdl.handle.net/2262/101510 | |