Show simple item record

dc.contributor.authorFitzgerald, Breiffni
dc.date.accessioned2025-05-21T09:40:31Z
dc.date.available2025-05-21T09:40:31Z
dc.date.issued2025
dc.date.submitted2025en
dc.identifier.citationShubham Baisthakur and Breiffni Fitzgerald, Predicting Wind Turbine Blade Tip Deformation With Long Short-Term Memory (LSTM) Models, Wind Energy, 2025en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractDriven by the challenges in measuring blade deformations, this study presents a novel machine learning methodology to predict blade tip deformation using inflow wind data and operational parameters. Using a long short-term memory (LSTM) model and a novel feature selection approach based on mutual information and recursive feature addition, this study presents a robust frame- work for multivariate time series prediction. The developed model offers significant computational cost reductions compared to full-dynamic simulations and also allows virtual sensing. This work empowers efficient and reliable wind turbine operation by providing an accurate and computationally efficient blade response prediction tool that can assist in improved wind turbine management, site-specific analysis and fatigue assessment.en
dc.language.isoenen
dc.relation.ispartofseriesWind Energy;
dc.rightsYen
dc.subjectfeature selection, long short-term memory (LSTM), multivariate time series prediction, surrogate modelling, virtual sensoren
dc.titlePredicting Wind Turbine Blade Tip Deformation With Long Short-Term Memory (LSTM) Modelsen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/fitzgeb7
dc.identifier.rssinternalid278027
dc.identifier.doihttps://doi.org/10.1002/we.70027
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDThemeSmart & Sustainable Planeten
dc.subject.TCDTagMACHINE LEARNINGen
dc.subject.TCDTagRenewable energyen
dc.subject.TCDTagStructural Engineeringen
dc.subject.TCDTagWind Energy and Wind Turbinesen
dc.identifier.orcid_id0000-0002-5278-6696
dc.status.accessibleNen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.contributor.sponsorGrantNumber20/FFP-P/8702en
dc.identifier.urihttps://hdl.handle.net/2262/111809


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record