Show simple item record

dc.contributor.authorFARES, MARIOen
dc.contributor.authorFALLON, PADRAICen
dc.date.accessioned2015-12-09T12:24:49Z
dc.date.available2015-12-09T12:24:49Z
dc.date.issued2015en
dc.date.submitted2015en
dc.identifier.citationCluxton, C.D., Caffrey, B.E., Kinsella, G.K., (...), Fares, M.A., Fallon, P.G., Functional conservation of an ancestral Pellino protein in helminth species, Scientific Reports, 5, 2015, 11687-en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractThe immune system of H. sapiens has innate signaling pathways that arose in ancestral species. This is exemplified by the discovery of the Toll-like receptor (TLR) pathway using free-living model organisms such as Drosophila melanogaster . The TLR pathway is ubiquitous and controls sensitivity to pathogen-associated molecular patterns (PAMPs) in eukaryotes. There is, however, a marked absence of this pathway from the plathyhelminthes, with the exception of the Pellino protein family, which is present in a number of species from this phylum. Helminth Pellino proteins are conserved having high similarity, both at the sequence and predicted structural protein level, with that of human Pellino proteins. Pellino from a model helminth, Schistosoma mansoni Pellino (SmPellino), was shown to bind and poly-ubiquitinate human IRAK-1, displaying E3 ligase activity consistent with its human counterparts. When transfected into human cells SmPellino is functional, interacting with signaling proteins and modulating mammalian signaling pathways. Strict conservation of a protein family in species lacking its niche signalling pathway is rare and provides a platform to examine the ancestral functions of Pellino proteins that may translate into novel mechanisms of immune regulation in humansen
dc.description.sponsorshipwww.nature.com/scientificreports/ 11 Scientific Repo R ts | 5:11687 | DO i : 10.1038/srep11687 25. Bahia, D., Andrade, L. F., Ludolf, F., Mortara, R. A. & Oliveira, G. Protein tyrosine kinases in Schistosoma mansoni. Mem Inst Oswaldo Cruz 101 Suppl 1, 137–143 (2006). 26. Costa, M. P. et al. In silico analysis and developmental expression of ubiquitin-conjugating enzymes in Schistosoma mansoni. Parasitol Res 114, 1769–77 (2015). 27. Pereira, R. V. et al. Molecular characterization of SUMO E2 conjugation enzyme: differential expression profile in Schistosoma mansoni. Parasitol Res 109, 1537–1546 (2011). 28. Santos, D. N. et al. Schistosoma mansoni: Heterologous complementation of a yeast null mutant by SmRbx, a protein similar to a RING box protein involved in ubiquitination. Exp Parasitol 116, 440–449 (2007). 29. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41, D808–815 (2013). 30. Xiao, H. et al. Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF kappaB activation. J Biol Chem 283, 14654–14664 (2008). 31. Consortium, S. j. G. S. a. F. A. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345–351 (2009). 32. Bennett, J. A. et al. Pellino-1 selectively regulates epithelial cell responses to rhinovirus. J Virol 86, 6595–6604 (2012). 33. Butler, M. P., Hanly, J. A. & Moynagh, P. N. Pellino3 is a novel upstream regulator of p38 MAPK and activates CREB in a p38- dependent manner. J Biol Chem 280, 27759–27768 (2005). 34. Andrade, L. F. et al. Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signaling pathway. PLoS Negl Trop Dis 8, e2949 (2014). 35. Osman, A., Niles, E. G. & LoVerde, P. T. Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation. J Biol Chem 279, 6474–6486 (2004). 36. Da’dara, A. A. & Skelly, P. J. Gene suppression in schistosomes using RNAi. Methods in molecular biology 1201, 143–164 (2015). 37. Sali, A. & Blundell, T. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779–815 (1993). 38. Sali, A. & Overington, J. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3, 1582–1596 (1994). 39. Bowie, J. U., Lüthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991). 40. Laskowski, R., Rullmannn, J., MacArthur, M., Kaptein, R. & Thornton, J. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8, 477–486 (1996). 41. Colovos, C. & Yeates, T. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2, 1511–1519 (1993). 42. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J Comput Chem 26, 1781–1802 (2005). 43. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102, 3586–3616 (1998). 44. Mackerell, A. D. Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25, 1584–1604 (2004). 45. Jorgensen, W. L., Chandrasekhar, J., Buckner, J. K. & Madura, J. D. Computer simulations of organic reactions in solution. Ann N Y Acad Sci 482, 198–209 (1986). 46. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J Mol Graph 14, 33–38, 27–38 (1996). 47. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011). 48. Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463 (2005). Acknowledgements We are grateful to Matt Berriman for input and comments on the manuscript. This work was supported by the Health Research Board PhD in Molecular Medicine research programme, Science Foundation Ireland, and the National Children’s Research Centre. We thank N. Delagic for assistance with in vitro signaling assays. The authors wish to acknowledge the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaignen
dc.format.extent11687en
dc.language.isoenen
dc.relation.ispartofseriesScientific Reportsen
dc.relation.ispartofseries5en
dc.rightsYen
dc.titleFunctional conservation of an ancestral Pellino protein in helminth speciesen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/faresmen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/pfallonen
dc.identifier.rssinternalid105193en
dc.identifier.doihttp://dx.doi.org/10.1038/srep11687en
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDThemeImmunology, Inflammation & Infectionen
dc.identifier.urihttp://hdl.handle.net/2262/75205


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record