Show simple item record

dc.contributor.authorLAVELLE, EDWARDen
dc.date.accessioned2017-02-02T15:12:42Z
dc.date.available2017-02-02T15:12:42Z
dc.date.issued2014en
dc.date.submitted2014en
dc.identifier.citationArancibia, S., Espinoza, C., Salazar, F., Del Campo, M., Tampe, R., Zhong, T.-Y., De Ioannes, P., Moltedo, B., Ferreira, J., Lavelle, E.C., Manubens, A., De Ioannes, A.E., Becker, M.I., A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma, PLoS ONE, 9, 1, 2014, e94703-en
dc.identifier.otherYen
dc.descriptionPUBLISHEDen
dc.description.abstractPorous silicon (pSi) microparticles, in diverse sizes and shapes, can be functionalized to present pathogen-associated molecular patterns that activate dendritic cells. Intraperitoneal injection of MPL-adsorbed pSi microparticles, in contrast to free MPL, resulted in the induction of local inflammation, reflected in the recruitment of neutrophils, eosinophils and proinflammatory monocytes, and the depletion of resident macrophages and mast cells at the injection site. Injection of microparticle-bound MPL resulted in enhanced secretion of the T helper 1 associated cytokines IFN-c and TNF-a by peritoneal exudate and lymph node cells in response to secondary stimuli while decreasing the anti-inflammatory cytokine IL-10. MPL-pSi microparticles independently exhibited anti-tumor effects and enhanced tumor suppression by low dose doxorubicin nanoliposomes. Intravascular injection of the MPL-bound microparticles increased serum IL-1b levels, which was blocked by the IL-1 receptor antagonist Anakinra. The microparticles also potentiated tumor infiltration by dendritic cells, cytotoxic T lymphocytes, and F4/80+ macrophages, however, a specific reduction was observed in CD204+ macrophagesen
dc.description.sponsorshipThis research was supported by Houston Methodist and Science Foundation Ireland (SFI Investigators Award 12/IA/1421) and the Irish Health Research Board (Scholars Programme in Immunology). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.en
dc.format.extente94703en
dc.relation.ispartofseriesPLoS ONEen
dc.relation.ispartofseries9en
dc.relation.ispartofseries1en
dc.rightsYen
dc.subjectalpha interferon; doxorubicin; gamma interferon; interleukin 10; interleukin 1beta; phosphoryl lipid A; porous silicon microparticle; recombinant interleukin 1 receptor blocking agent; silicon; unclassified drug; antineoplastic agent; cytokine; doxorubicin; immunological adjuvant; lipid A; liposome; microsphere; nanoparticle; siliconen
dc.subject.lcshalpha interferon; doxorubicin; gamma interferon; interleukin 10; interleukin 1beta; phosphoryl lipid A; porous silicon microparticle; recombinant interleukin 1 receptor blocking agent; silicon; unclassified drug; antineoplastic agent; cytokine; doxorubicin; immunological adjuvant; lipid A; liposome; microsphere; nanoparticle; siliconen
dc.titleA novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanomaen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/lavelleeen
dc.identifier.rssinternalid109977en
dc.identifier.doihttp://dx.doi.org/10.1371/journal.pone.0094703en
dc.rights.ecaccessrightsopenAccess
dc.identifier.orcid_id0000-0002-3167-1080en
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.contributor.sponsorGrantNumber12/IA/1421en
dc.identifier.urihttp://hdl.handle.net/2262/79194


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record