dc.contributor.author | MATHUR, SAHIL NAKUL | |
dc.date.accessioned | 2019-08-01T08:01:55Z | |
dc.date.available | 2019-08-01T08:01:55Z | |
dc.date.issued | 2019 | en |
dc.date.submitted | 2019 | |
dc.identifier.citation | MATHUR, SAHIL NAKUL, Automatic generation of relational to ontology mapping correspondences, Trinity College Dublin.School of Computer Science & Statistics, 2019 | en |
dc.identifier.other | Y | en |
dc.description | APPROVED | en |
dc.description.abstract | This thesis presents Milan, an automatic relational-to-ontology system. Milan automatically generates mapping correspondences from a source relational database (RDB) and a target ontology. It addresses the relational-to-ontology challenges by resolving naming conflicts, structural and semantic heterogeneity. This enables high fidelity mapping correspondence generation for realistic databases that are de-normalised or utilize features of the relational data model that do not trivially map to RDF.
Through a systematic review of the state-of-the-art in relational-to-ontology patterns and automatic relational-to-ontology mapping correspondence systems, the thesis sums up requirements automatic systems should address and also identifies the gaps present in the current state-of-the-art. The thesis leverages this analysis to design Milan, constituting three main processes and six sub-processes. The description of each process is done using UML process diagrams, algorithms and input/output templates. The thesis uses a popularly used benchmarking tool to evaluate Milan and other state-of-the-art systems. The evaluation experiment involves scenarios and tests, which not just describe the overall performance of a system but also quantitatively describes the various mapping challenges where the system fairs well and poorly. | en |
dc.language.iso | en | en |
dc.publisher | Trinity College Dublin. School of Computer Science & Statistics. Discipline of Computer Science | en |
dc.rights | Y | en |
dc.subject | RDB2RDF | en |
dc.subject | OBDA | en |
dc.subject | Schema and Ontology Matching | en |
dc.subject | Mapping Rules | en |
dc.subject | Linked Data | en |
dc.subject | Automatic Mapping | en |
dc.subject | Graph Database | en |
dc.subject | Artificial Intelligence | en |
dc.title | Automatic generation of relational to ontology mapping correspondences | en |
dc.type | Thesis | en |
dc.type.supercollection | thesis_dissertations | en |
dc.type.supercollection | refereed_publications | en |
dc.type.qualificationlevel | Masters (Research) | en |
dc.identifier.peoplefinderurl | https://tcdlocalportal.tcd.ie/pls/EnterApex/f?p=800:71:0::::P71_USERNAME:MATHURS | en |
dc.identifier.rssinternalid | 205803 | en |
dc.rights.ecaccessrights | openAccess | |
dc.contributor.sponsor | Science Foundation Ireland (SFI) | en |
dc.contributor.sponsor | ADAPT Centre | en |
dc.identifier.uri | http://hdl.handle.net/2262/89133 | |