Show simple item record

dc.contributor.authorPorter, Richard
dc.date.accessioned2021-05-10T14:58:01Z
dc.date.available2021-05-10T14:58:01Z
dc.date.issued2021
dc.date.submitted2021en
dc.identifier.citationK.Keogh, C.McKenna, R.K.Porter, S.M.Waters, D.A.Kenny, Effect of dietary restriction and subsequent realimentation on hepatic oxidative phosphorylation in cattle, Animal, 2021, 100009-en
dc.identifier.otherY
dc.descriptionPUBLISHEDen
dc.description.abstractCompensatory growth (CG) is a naturally accelerated growth which occurs upon realimentation, following a prior period of dietary restriction. The process is harnessed worldwide as a management practice to reduce feed costs in beef cattle production. The objective of this study was to assess the potential contribution of hepatic cellular mitochondrial capacity to CG through global hepatic oxidative phosphorylation gene expression analyses as well as functional mitochondrial enzyme activity assays. Holstein–Friesian bulls were separated into two groups: (i) restricted feed allowance for 125 days (Period 1) (RES; n = 30) followed by ad-libitum feeding for 55 days (Period 2) or (ii) ad-libitum access to feed throughout (Periods 1 and 2) (ADLIB; n = 30). At the end of each period, 15 animals from each treatment group were slaughtered and hepatic tissue was collected. Tissue samples were subjected to RNAseq and spectrophotometric analysis for the functional assessment of mitochondria. RES and ADLIB groups grew at 0.6 kg/day and 1.9 kg/day, respectively, during Period 1. During Period 2, the RES group underwent CG growing at 2.5 kg/day, with ADLIB animals gaining 1.4 kg/day. Oxidative phosphorylation genes were differentially expressed in response to both dietary restriction and CG. Spectrophotometric assays indicated that mitochondrial abundance was greater in animals undergoing dietary restriction at the end of Period 1 and subsequently reduced during realimentation (P < 0.02). Results indicate that mitochondrial capacity may be enhanced during dietary restriction to more effectively utilize diet-derived nutrients. However, enhanced mitochondrial capacity does not appear to be directly contributing to CG in cattle.en
dc.format.extent100009en
dc.language.isoenen
dc.relation.ispartofseriesAnimal;
dc.relation.urihttps://doi.org/10.1016/j.animal.2020.100009en
dc.rightsYen
dc.subjectcattleen
dc.subjectCompensatory growth (CG)en
dc.subjectreduce feed costsen
dc.subject.lcshcattleen
dc.subject.lcshCompensatory growth (CG)en
dc.subject.lcshreduce feed costsen
dc.titleEffect of dietary restriction and subsequent realimentation on hepatic oxidative phosphorylation in cattleen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/rkporter
dc.identifier.rssinternalid222271
dc.rights.ecaccessrightsopenAccess
dc.relation.sourcehttps://doi.org/10.1016/j.animal.2020.100009en
dc.relation.citesCitesen
dc.subject.TCDThemeGenes & Societyen
dc.subject.TCDTagAnimal Nutritionen
dc.identifier.orcid_id0000-0001-9854-5161
dc.subject.darat_thematicEducationen
dc.status.accessibleNen
dc.contributor.sponsorScience Foundation Ireland (SFI)en
dc.contributor.sponsorGrantNumber09/RFP/GEN2447en
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1751731120300094?via%3Dihub
dc.identifier.urihttp://hdl.handle.net/2262/96225


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record