dc.contributor.author | Stevenson, Nigel | |
dc.date.accessioned | 2022-05-06T14:21:07Z | |
dc.date.available | 2022-05-06T14:21:07Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022 | en |
dc.identifier.citation | Zhang Y, Gargan S, Roche FM, Frieman M, Stevenson NJ. Inhibition of the IFN-α JAK/STAT Pathway by MERS-CoV and SARS-CoV-1 Proteins in Human Epithelial Cells. Viruses. 2022 Mar 23;14(4):667 | en |
dc.identifier.other | Y | |
dc.description.abstract | Coronaviruses (CoVs) have caused several global outbreaks with relatively high mortality rates, including Middle East Respiratory Syndrome coronavirus (MERS)-CoV, which emerged in 2012, and Severe Acute Respiratory Syndrome (SARS)-CoV-1, which appeared in 2002. The recent emergence of SARS-CoV-2 highlights the need for immediate and greater understanding of the immune evasion mechanisms used by CoVs. Interferon (IFN)-α is the body’s natural antiviral agent, but its Janus kinase/signal transducer and activators of transcription (JAK/STAT) signalling pathway is often antagonized by viruses, thereby preventing the upregulation of essential IFN stimulated genes (ISGs). Therapeutic IFN-α has disappointingly weak clinical responses in MERS-CoV and SARS-CoV-1 infected patients, indicating that these CoVs inhibit the IFN-α JAK/STAT pathway. Here we show that in lung alveolar A549 epithelial cells expression of MERS-CoV-nsp2 and SARS-CoV-1-nsp14, but not MERS-CoV-nsp5, increased basal levels of total and phosphorylated STAT1 & STAT2 protein, but reduced IFN-α-mediated phosphorylation of STAT1-3 and induction of MxA. While MERS-CoV-nsp2 and SARS-CoV-1-nsp14 similarly increased basal levels of STAT1 and STAT2 in bronchial BEAS-2B epithelial cells, unlike in A549 cells, they did not enhance basal pSTAT1 nor pSTAT2. However, both viral proteins reduced IFN-α-mediated induction of pSTAT1-3 and ISGs (MxA, ISG15 and PKR) in BEAS-2B cells. Furthermore, even though IFN-α-mediated induction of pSTAT1-3 was not affected by MERS-CoV-nsp5 expression in BEAS-2B cells, downstream ISG induction was reduced, revealing that MERS-CoV-nsp5 may use an alternative mechanism to reduce antiviral ISG induction in this cell line. Indeed, we subsequently discovered that all three viral proteins inhibited STAT1 nuclear translocation in BEAS-2B cells, unveiling another layer of inhibition by which these viral proteins suppress responses to Type 1 IFNs. While these observations highlight cell line-specific differences in the immune evasion effects of MERS-CoV and SARS-CoV-1 proteins, they also demonstrate the broad spectrum of immune evasion strategies these deadly coronaviruses use to stunt antiviral responses to Type IFN. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Viruses; | |
dc.relation.ispartofseries | 14; | |
dc.relation.ispartofseries | 4; | |
dc.rights | Y | en |
dc.subject | Coronaviruses (CoVs) | en |
dc.subject | SARS-CoV-2 | en |
dc.subject | Interferon (IFN)-α | en |
dc.subject | Immune evasion | en |
dc.subject | ISG (interferon stimulated genes) | en |
dc.subject | JAK/STAT (janus kinase/signal transducer and activator of transcription) | en |
dc.subject | Interferon-alpha | en |
dc.subject | SARS-CoV-1 | en |
dc.subject | MERS-CoV | en |
dc.title | Inhibition of the IFN-α JAK/STAT Pathway by MERS-CoV and SARS-CoV-1 Proteins in Human Epithelial Cells | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/stevennj | |
dc.identifier.rssinternalid | 242706 | |
dc.identifier.doi | http://dx.doi.org/10.3390/v14040667 | |
dc.rights.ecaccessrights | openAccess | |
dc.identifier.orcid_id | 0000-0002-6966-9314 | |
dc.contributor.sponsor | Science Foundation Ireland | en |
dc.contributor.sponsorGrantNumber | 19/FFP/6483 | en |
dc.identifier.uri | http://hdl.handle.net/2262/98545 | |