dc.contributor.author | O'Sullivan, Declan | en |
dc.contributor.author | Little, Mark | en |
dc.contributor.author | Hederman, Lucy | en |
dc.date.accessioned | 2019-06-05T13:47:22Z | |
dc.date.available | 2019-06-05T13:47:22Z | |
dc.date.issued | 2018 | en |
dc.date.submitted | 2018 | en |
dc.identifier.citation | Brian Reddy, Brett Houlding, Lucy Hederman, Mark Canney, Christophe Debruyne, Ciaran O'Brien, Alan Meehan, Declan O'Sullivan, Mark A Little,, Data linkage in medical science using the resource description framework: the AVERT model, HRB Open Research, 1, 20, 2018, 1-15 | en |
dc.identifier.other | Y | en |
dc.description | PUBLISHED | en |
dc.description.abstract | There is an ongoing challenge as to how best manage and understand ‘big data’ in precision medicine settings. This paper describes the potential for a Linked Data approach, using a Resource Description Framework (RDF) model, to combine multiple datasets with temporal and spatial elements of varying dimensionality. This “AVERT model” provides a framework for converting multiple standalone files of various formats, from both clinical and environmental settings, into a single data source. This data source can thereafter be queried effectively, shared with outside parties, more easily understood by multiple stakeholders using standardized vocabularies, incorporating provenance metadata and supporting temporo-spatial reasoning. The approach has further advantages in terms of data sharing, security and subsequent analysis. We use a case study relating to anti-Glomerular Basement Membrane (GBM) disease, a rare autoimmune condition, to illustrate a technical proof of concept for the AVERT model. | en |
dc.format.extent | 1-15 | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | HRB Open Research | en |
dc.relation.ispartofseries | 1 | en |
dc.relation.ispartofseries | 20 | en |
dc.rights | Y | en |
dc.subject | evidence-based medicine | en |
dc.subject | information and knowledge management | en |
dc.subject | data security and confidentiality | en |
dc.subject | resource description framework | en |
dc.subject | semantic web | en |
dc.subject | linked data | en |
dc.subject | electronic health records | en |
dc.title | Data linkage in medical science using the resource description framework: the AVERT model | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/osulldps | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/hederman | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/mlittle | en |
dc.identifier.rssinternalid | 193096 | en |
dc.identifier.doi | http://dx.doi.org/10.12688/hrbopenres.12851.1 | en |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTheme | Digital Engagement | en |
dc.subject.TCDTag | Knowledge and data engineering | en |
dc.identifier.rssuri | https://hrbopenresearch.s3.amazonaws.com/manuscripts/13913/22124ad1-2505-4203-bb96-bc3327860937_12851_-_brian_reddy.pdf?doi=10.12688/hrbopenres.12851.1&numberOfBrowsableCollections=0&numberOfBrowsableGateways=0 | en |
dc.identifier.orcid_id | 0000-0003-1090-3548 | en |
dc.status.accessible | N | en |
dc.identifier.uri | http://hdl.handle.net/2262/87256 | |